OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
APMO |
OMCC |
Retos UJA |
Nota. Hemos supuesto que cuando $A$ y $B$ están en los semiejes positivos, el cuadrado está enteramente contenido en el primer cuadrante. Existe otra posibilidad que es suponer que en ese caso el cuadrado mira hacia el otro lado. No obstante, en tal caso, los lugares geométricos que nos piden serían simétricos de los obtenidos ya que se trataría simplemente de girar $90^\circ$ la figura.
Ahora bien, si en la igualdad a la que queremos llegar pasamos todo al miembro de la izquierda y ponemos denominador común, tenemos que \[\frac{1}{\sqrt{A}+\sqrt{B}}+\frac{1}{\sqrt{B}+\sqrt{C}}-\frac{2}{\sqrt{A}+\sqrt{C}}=\frac{A-2B+C}{(\sqrt{A}+\sqrt{B})(\sqrt{B}+\sqrt{C})(\sqrt{A}+\sqrt{C})}=0,\] dado que $B=\frac{\pi}{3}$ y, por tanto, $A+C=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$, de donde $A-2B+C=0$.