Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 677
Un cristalero dispone de una pieza de vidrio de forma triangular. Usando sus conocimientos de geometría, sabe que podría cortar de ella un círculo de radio $r$. Demuestra que, para cualquier número natural $n$, de la pieza triangular puede obtener $n^2$ círculos de radio $\frac{r}{n}$ (suponiendo que se puedan hacer siempre los cortes perfectos).
pistasolución 1info
Pista. Subdivide el triángulo en $n^2$ triángulos iguales entre sí y semejantes al primero. Ahora repite la operación del cristalero en cada uno de los $n^2$ triángulos (a escala).
Solución. Subdividimos cada lado en $n$ segmentos iguales y los unimos mediante paralelas a los lados, como se muestra en la figura para $n=4$. Este proceso descompone el triángulo original en $n^2$ triángulos congruentes y semejantes al original con razón de semejanza $\frac{1}{n}$. En tal caso, puede repetir el corte que ha hecho sobre el triángulo grande a escala $\frac{1}{n}$ en cada triángulo pequeño; en particular, puede trazar círculos de radio $\frac{r}{n}$ si en el triángulo grande ha podido trazar círculos de radio $r$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 675
Las longitudes de los lados de un triángulo están en progresión geomética de razón $r$. Hallar los valores de $r$ para los que el triángulo es, respectivamente, acutángulo, rectángulo y obtusángulo.
pistasolución 1info
Pista. Si $a$ denota al lado mayor del triángulo y $b$ y $c$ son los otros dos, el teorema de Pitágoras $a^2=b^2+c^2$ se da cuando el triángulo es rectángulo, pero las desigualdades $a^2\lt b^2+c^2$ y $a^2\gt b^2+c^2$ se dan, respectivamente, cuando el triángulo es acutángulo y obtusángulo.
Solución. Supongamos que las longitudes de los lados son $a,ar,ar^2$ para $r\geq 1$. El triángulo en cuestión debe verificar la desigualdad triangular para existir. Como lados están ordenados de mayor a menor, también lo estarán los correspondientes lados opuestos, lo que nos lleva a que la desigualdad triangular equivale a $ar^2\gt a+ar$, es decir, $r^2-r-1\gt 0$. Esta desigualdad se resuelve fácilmente y nos dice que el dominio donde se mueve la variable $r$ es $1\leq r\lt\frac{1+\sqrt{5}}{2}$.

De vuelta al problema en cuestión, se trata de ver si el ángulo $\alpha$ opuesto a $ar^2$ es agudo, recto u obtuso. Por el teorema del coseno, este ángulo verifica \[(ar^2)^2=a^2+(ar)^2-2a(ar)\cos(\alpha)\ \Leftrightarrow\ \cos(\alpha)=\frac{1+r^2-r^4}{2r}\] y buscamos saber cuándo esta última cantidad es negativa (obtusángulo), cero (rectángulo) o positiva (acutángulo). Para ello, resolvemos la ecuación bicuadrada $1+r^2-r^4=0$, que nos da soluciones \[r^2=\frac{1\pm\sqrt{5}}{2}\ \Rightarrow\ r=\pm\sqrt{\frac{1+\sqrt{5}}{2}},\] donde hemos descartado las dos soluciones (complejas) en que $r^2$ era negativo. Deducimos que el polinomio $p(r)=1+r^2-r^4$ cambia de signo en estos dos valores (son raíces simples). Como el coeficiente de mayor grado es negativo, $p(r)$ pasa de negativo a positivo y luego a negativo. Tenemos así la solución al problema:

  • acutángulo: $1\leq r\lt \sqrt{\frac{1+\sqrt{5}}{2}}$,
  • rectángulo: $r=\sqrt{\frac{1+\sqrt{5}}{2}}$,
  • obtusángulo: $\sqrt{\frac{1+\sqrt{5}}{2}}\lt r\lt \frac{1+\sqrt{5}}{2}$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 671
Dos números enteros no negativos $a$ y $b$ son cuates si $a+b$ tiene solamente ceros y unos en su expresión decimal. Sean $A$ y $B$ dos conjuntos infinitos de enteros no negativos tales que $B$ es el conjunto de todos los números que son cuates de todos los elementos de $A$ y $A$ es el conjunto de todos los números que son cuates de todos los elementos de $B$. Demostrar que en uno de los dos conjuntos, $A$ o $B$, hay infinitos pares de números $x$ e $y$ tales que $x-y=1$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 670
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotaremos por $m(PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
  • Si $P$ y $Q$ están en $S$, entonces $m(PQ)$ corta a $S$.
  • Si $P_1Q_1$, $P_2Q_2$ y $P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de $m(P_1Q_1)$, $m(P_2Q_2)$ y $m(P_3Q_3)$.
Determinar el número de puntos que puede tener $S$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 668
Demostrar que, para cualquier polígono convexo de área $1$, existe un paralelogramo de área $2$ que lo contiene.
pistasolución 1info
Pista. Toma el menor paralelogramo que contiene al polígono y con uno de sus lados paralelo al segmento que une los dos vértices más distantes.
Solución. Sean $A$ y $B$ los dos vértices más alejados entre sí del polígono y consideramos los dos vértices $C$ y $D$ más alejados de la recta $AB$ en sendos semiespacios definidos por $AB$. Trazamos por $A$ y $B$ perpendiculares $r_A$ y $r_B$ a $AB$ y por $C$ y $D$ paralelas $r_C$ y $r_D$ a $AB$. Estas cuatro rectas $r_A,r_B,r_C,r_D$ determinan un rectángulo $R$. Vamos a ver que $R$ (que es, en particular, paralelogramo) contiene al polígono y que tiene área menor o igual que $2$.
  • En primer lugar, tenemos que ningún vértice se puede salir de la banda determinada por $r_A$ y $r_B$ ya que en tal caso dicho vértice tendría distancia con $A$ o con $B$ mayor que $AB$ (¿por qué?), contradiciendo que $AB$ es el segmento entre vértices de longitud máxima. Por otro lado, ningún vértice se puede salir de la banda determinada por $r_C$ y $r_D$ ya que en tal caso dicho vértice distaría de $AB$ más que $C$ o $D$, contradiciendo que estos son los puntos más alejados. Por tanto, todos los vértices del polígono están en $R$ y, por convexidad, todo el polígono debe estar en $R$.
  • Finalmente, veamos que $\text{área}(R)\leq 2$. Para ello, observamos que los triángulos $ACB$ y $ADB$ están contenidos en el polígono (de nuevo, por convexidad), de donde \[1=\text{área}(\text{polígono})\geq\text{área}(ACB)+\text{área}(ADB)=\tfrac{1}{2}\text{área}(R).\]

Esto termina la demostración. Es importante observar que uno de los dos puntos $C$ o $D$ podría no estar definido porque no haya vértices a un lado de la recta $AB$. En tal caso, se razona de forma similar usando que $r_C=AB$ o $r_D=AB$.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre