OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Que se puede formar un triángulo con los segmentos $AP,BP,CP$ es cierto para cualquier punto interior al triángulo. Observemos que podemos prolongar $AP$ hasta llegar a un punto $D$ del lado $BC$. Con lo que $AP\leq AD\leq BC\leq BP+PC$, donde hemos usado que la longitud de $AD$ es menor que la longitud de un lado y la desigualdad triangular. Se razona de la misma forma que $BP\leq AP+CP$ y que $CP\leq AP+BP$.
Para calcular el área del triángulo, llamemos $a=AP$, $b=BP$ y $c=CP$ por comodidad. La fórmula de Herón nos dice que \begin{align*} 16S^2&=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)\\ &=((b+c)^2-a^2)((b-c)^2-a^2)\\ &=-a^4+2 a^2 b^2+2 a^2 c^2-b^4+2 b^2 c^2-c^4\\ &=4(a^2b^2+b^2c^2+c^2a^2)-(a^2+b^2+c^2)^2. \end{align*} Hemos probado que $a^2+b^2+c^2=5$ y también es fácil comprobar que \[a^2b^2+b^2c^2+c^2a^2=3(x^2+y^2)^2+4(x^2+y^2)+\tfrac{16}{3}=7,\] lo que nos lleva a que $16S^2=4\cdot 7-25=3$ y, por tanto, $S=\frac{\sqrt{3}}{4}$.
La región rotada $A'\cup B'$ tiene área $2$ y está delimitada por $r'$, mientras que $B\cup C$ está delimitada por $s$ paralela a $r'$ y también tiene área $2$. Para que esto ocurra, debe ser necesariamente $r'=s$ (en caso contrario, $A'\cup B'$ estaría estrictamente contenida en $B\cup C$ o viceversa, luego no podrían tener la misma área). Por un argumento similar, la región $B'$ debe coincidir con $C$ para que ambas tengan área $1$ (si no, $B'$ estaría estrictamente contenida en $C$ o viceversa). Por lo tanto, el punto de intersección de $r$ y $s$ debe ser el centro de rotación $O$. Tenemos así que $A,B,C,D$ son congruentes mediante rotaciones respecto de $O$ y tienen todas área $1$.
Para responder al apartado (b), hacemos una inversión respecto de la circunferencia centrada en $B$ y de radio $2r_1$, que deja $t$ invariante y lleva $C_1$ en la recta $C_1'$ paralela a $t$ que pasa por $A$. Como las inversiones mantienen las rectas/circunferencias, los ángulos y las tangencias, la circunferencia $C_2$ se transforma en otra circunferencia $C_2'$ tangente a las rectas paralelas $C_1'$ y $t$. Entonces, la recta $C'$ paralela a $t$ que pasa por $O$ es ortogonal a todas las circunferencias $C_2'$. Tras invertir de nuevo (deshacemos la inversión), $C'$ se transforma en la circunferencia $C$ tangente a $t$ en $B$ y de radio $2r_1$, y es ortogonal a todas las circunferencias $C_2$.