Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2202
La circunferencias $C_1,C_2,C_3$ tienen el mismo radio y pasan todas ellas por un punto $X$. Llamamos $Y_{ij}$ al otro punto de intersección de $C_i$ y $C_j$. Demostrar que \[\angle XO_1Y_{12}+\angle XO_2Y_{23}+\angle XO_3Y_{31}=180^\circ,\] donde $O_i$ denota el centro de la circunferencia $C_i$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2193
Tres moscas se desplazan a lo largo del perímetro de un triángulo de forma que el baricentro del triángulo que forman queda fijo y al menos una de las moscas recorre todo el perímetro del triángulo. Demostrar que dicho baricentro coincide con el baricentro del triángulo original.

Nota. No se asume que las moscas tengan la misma masa ni que se desplacen a la misma velocidad ni que sus velocidades sean constantes.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2191
Se considera una familia finita de polígonos en el plano tales que dos cualesquiera de ellos tienen algún punto en común. Demostrar que existe una recta que corta a todos los polígonos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2189
Dado un hexágono convexo $ABCDEF$, consideremos los puntos medios de las seis diagonales $AC,BD,CE,DF,EA,FB$. Demostrar que estos puntos medios son vértices de un hexágono convexo con área $\frac{1}{4}$ del área del hexágono original.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2185
  1. Rotamos un triángulo $ABC$ respecto de su circuncentro para obtener un nuevo triángulo $A'B'C'$. Las rectas $AB$ y $A'B'$ se cortan en $C''$, las rectas $BC$ y $B'C'$ se cortan en $A''$ y las rectas $CA$ y $C'A'$ se cortan en $B''$. Demostrar que los triángulos $ABC$ y $A''B''C''$ son semejantes.
  2. Rotamos un cuadrilátero cíclico $ABCD$ respecto del centro de su circunferencia circunscrita para obtener un nuevo cuadrilátero $A'B'C'D'$. Demostrar que los puntos de intersección de los lados homólogos forman un paralelogramo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre