Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 880
La circunferencia $\Gamma$ inscrita al triángulo escaleno $ABC$ es tangente a los lados $BC$, $CA$ y $AB$ en los puntos $D$, $E$ y $F$, respectivamente. La recta $EF$ corta a la recta $BC$ en $G$. La circunferencia de diámetro $GD$ corta a $\Gamma$ en $R$ ($R\neq D$). Sean P y Q ($P\neq R$, $Q\neq R$) las intersecciones de $BR$ y $CR$ con $\Gamma$, respectivamente. Las rectas $BQ$ y $CP$ se cortan en $X$. La circunferencia circunscrita a $CDE$ corta al segmento $QR$ en $M$ y la circunferencia circunscrita a $BDF$ corta al segmento $PR$ en $N$. Demostrar que las rectas $PM$, $QN$ y $RX$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 877
Sea $P$ un punto cualquiera de la bisectriz del ángulo $A$ de un triángulo $ABC$ y sean $A',B',C'$ puntos de las rectas $BC,CA,AB$, respectivamente, tales que $PA'$ es perpendicular a $BC$, $PB'$ es perpendicular a $CA$ y $PC'$ es perpendicular a $AB$. Demostrar que $PA'$ y $B'C'$ se cortan sobre la mediana $AM$, siendo $M$ el punto medio de $BC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 875
Sea $ABCD$ un cuadrilátero convexo y sea $P$ la intersección de sus diagonales $AC$ y $BD$ y supongamos que cumple $\angle APD=60^\circ$. Sean $E,F,G,H$ los puntos medios de los lados $AB,BC,CD,DA$, respectivamente. Hallar el mayor número real positivo $k$ tal que \[EG+3HF\geq kd+(1-k)s,\] siendo $s$ el semiperímetro de $ABCD$ y $d$ la suma de las longitudes de las diagonales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 869
Se considera un tetraedro regular como el de la figura. Si el punto $E$ recorre la arista $AB$. ¿Cuándo el ángulo $\angle CED$ es máximo?
imagen
pistasolución 1info
Pista. Si $M$ es el punto medio de $CD$, demuestra el ángulo será máximo cuando la longitud de $EM$ sea mínima.
Solución. Sea $M$ el punto medio de $CD$, de forma que $EM$ es una altura del triángulo isósceles $CDE$. El ángulo $\alpha=\angle CED$ verifica que $\mathrm{tan}(\frac{\alpha}{2})=\frac{CM}{EM}$. El ángulo será máximo cuando la tangente sea máxima, es decir, cuando $EM$ sea mínimo ya que $CM$ no depende de dónde hayamos puesto el punto $E$. Ahora podemos restringirnos al plano que contiene al triángulo $ABM$. El segmento $EM$ está en este plano y su longitud será mínima cuando $EM$ sea perpendicular a $AB$, es decir, cuando $EM$ sea una altura de $ABM$, que coincide con la mediatriz por ser $ABM$ isósceles. Concluimos que el ángulo $\angle CED$ es máximo cuando $E$ es el punto medio de $AB$.

Nota. Usando el seno en lugar de la tangente, también puede razonarse de forma similar que lo que hay que minimizar es la longitud de $CE$, lo que nos lleva a que ha de ser perpendicular a $AC$ y $E$ tiene que ser el punto medio.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 865
Se considera un triángulo equilátero de lado $1$ y centro $O$, como el de la figura. Un rayo parte de $O$ y se refleja tres veces: primero en el lado $AB$, después en el lado $AC$ y finalmente en el lado $BC$. El rayo termina alcanzando el vértice $A$. Determinar la longitud mínima de un rayo en tales condiciones.

Nota. Cuando un rayo se refleja en un lado, los ángulos de entrada (incidencia) y salida (reflexión) coinciden.

imagen
pistasolución 1info
Pista. Refleja el triángulo $ABC$ respecto de sus lados.
Solución. Si reflejamos repetidamente el triángulo respecto de sus lados, entonces la poligonal que forma la trayectoria del rayo se vuelve una línea recta ya que el ángulo de incidencia es el de reflexión. Como nos dicen que se refleja primero respecto de $AB$, luego $AC$ y por último $BC$, estas son las reflexiones que debemos hacer y que hemos dibujado en la figura. Vemos así que hay una única forma hacer los rebotes para que se cumpla la condición del enunciado y ahora solamente hay que calcular su longitud.

Para ello, observamos que $OBA'$ es un triángulo rectángulo ya que $OB$ es una altura del triángulo equilátero y $BA'$ es paralela al lado opuesto. Además, se tiene que $OB=\frac{2}{3}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{3}$ (dos tercios de la altura) y $BA'=2$ (dos veces el lado), luego el teorema de Pitágoras nos da la distancia que buscamos: \[OA'=\sqrt{\left(\tfrac{\sqrt{3}}{3}\right)^2+2^2}=\frac{\sqrt{39}}{3}.\]

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre