Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2191
Se considera una familia finita de polígonos en el plano tales que dos cualesquiera de ellos tienen algún punto en común. Demostrar que existe una recta que corta a todos los polígonos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2189
Dado un hexágono convexo $ABCDEF$, consideremos los puntos medios de las seis diagonales $AC,BD,CE,DF,EA,FB$. Demostrar que estos puntos medios son vértices de un hexágono convexo con área $\frac{1}{4}$ del área del hexágono original.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2185
  1. Rotamos un triángulo $ABC$ respecto de su circuncentro para obtener un nuevo triángulo $A'B'C'$. Las rectas $AB$ y $A'B'$ se cortan en $C''$, las rectas $BC$ y $B'C'$ se cortan en $A''$ y las rectas $CA$ y $C'A'$ se cortan en $B''$. Demostrar que los triángulos $ABC$ y $A''B''C''$ son semejantes.
  2. Rotamos un cuadrilátero cíclico $ABCD$ respecto del centro de su circunferencia circunscrita para obtener un nuevo cuadrilátero $A'B'C'D'$. Demostrar que los puntos de intersección de los lados homólogos forman un paralelogramo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2184
Sean $ABC$ un triángulo de área $1$ y $D,E,F$ los puntos medios de los lados $BC,CA,AB$, respectivamente. Tomamos puntos $P,Q,R$ en los segmentos $BF,CD,AE$, respectivamente. ¿Cuál es el menor área posible para la intersección de los triángulos $DEF$ y $PQR$?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2183
Tenemos un polígono convexo tal que ningún triángulo de área $1$ puede colocarse dentro de él, incluso tocando el borde. Demostrar que el polígono puede colocarse dentro de un triángulo de área $4$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre