Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 548
En un triángulo escaleno $ABC$ con $\angle BAC=90^\circ$ se consideran las circunferencias inscrita y circunscrita. La recta tangente en $A$ a la circunferencia circunscrita corta a la recta $BC$ en $M$. Sean $S$ y $R$ los puntos de tangencia de la circunferencia inscrita con los catetos $AC$ y $AB$, respectivamente. La recta $RS$ corta a la recta $BC$ en $N$. Las retas $AM$ y $SR$ se cortan en $U$. Demostrar que el triángulo $UMN$ es isósceles.
pistasolución 1info
Pista. ¡Caza de ángulos!
Solución. Llamamos $\gamma=\angle ACB$ por comodidad y supongamos que $AB\lt AC$ sin perder generalidad. Tenemos que $\angle AOC=2\gamma$ por la propiedad del ángulo central. Como $OA$ y $AM$ son perpendiculares, para que los ángulos del triángulo $AMO$ sumen $180$, tiene que ser $\angle AMO=90-2\gamma$, luego $\angle NMU=90+2\gamma$ y ya tenemos uno de los tres ángulos del triángulo $UMN$. Por otro lado, se tiene que $ARS$ es rectángulo isósceles, luego $\angle NRB=\angle ARS=45$. Como $\angle RBN=180-\angle ABC=180-(90-\gamma)=90+\gamma$, para que los ángulos de $NRB$ sumen $180$ tiene que ser $\angle RNB=45-\gamma$ y tenemos el segundo ángulo de $UMN$. Para que la suma sea $180$, el tercero tiene que ser igual a $180-(90+2\gamma)-(45-\gamma)=45-\gamma$, luego $\angle UNM=\angle MUN=45-\gamma$ y queda demostrado que el triángulo $UMN$ es isósceles.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 546
Sea $O$ el circuncentro de un triángulo acutángulo $ABC$ y $A_1$ un punto en el arco menor $BC$ de la circunferencia circunscrita al triángulo $ABC$. Sean $A_2$ y $A_3$ puntos en los lados $AB$ y $AC$, respectivamente, tales que $\angle BA_1A_2=\angle OAC$ y $\angle CA_1A_3=\angle OAB$. Demostrar que la recta $A_2A_3$ pasa por el ortocentro del triángulo $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 541
Sea $ABCD$ un cuadrilátero convexo cuyas diagonales son perpendiculares y se cortan en un punto $P$. Demostrar que hay una circunferencia que pasa por las proyecciones desde $P$ a los cuatro lados del cuadrilátero.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 540
Sea $ABCD$ un cuadrilátero cíclico (inscrito en una circunferencia). Demostrar que los incentros de los triángulos $ABC$, $BCD$ y $CDA$ y $ADB$ son los vértices de un rectángulo.
pista
Sin soluciones
info
Pista. Cuenta los ángulos buscando cuadriláteros cíclicos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 539
Sea $P$ el punto de intersección de las diagonales de un cuadrilátero cíclico $ABCD$ y sea $M$ el punto medio de $CD$. La circunferencia que pasa por $P$ y que es tangente a $CD$ en $M$, corta a $BD$ y a $AC$ en los puntos $Q$ y $R$, respectivamente. Se toma un punto $S$ sobre el segmento $BD$ de tal manera que $BS = DQ$. Por $S$ se traza una paralela a $AB$ que corta a $AC$ en un punto $T$. Demostrar que $AT = RC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre