Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 321
Dado un pentágono regular, construir un triángulo que tenga la misma área.
pistasolución 1info
Pista. Moviendo los vértices del pentágono a lo largo de ciertas rectas, el área no cambia.
Solución. Llamemos $ABCDE$ al pentágono y tracemos por $D$ una paralela a $CE$ y por $B$ una paralela a $AC$. Estas paralelas cortan a la recta que contiene a $AE$ en $D'$ y $B'$, respectivamente, como se muestra en la figura. Entonces, los triángulos $CDE$ y $CD'E$ tienen la misma área, así como los triángulos $ABC$ y $AB'C$. Por tanto, el área del pentágono $ABCDE$ es igual al área del triángulo $B'CD'$.imagen

Nota. ¿Cuáles son los ángulos del triángulo construido? ¿Es equilátero?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 317
Los puntos $A$, $B$ y $C$ dividen a la circunferencia $\Omega$ en tres arcos. Sea $X$ un punto arbitrario sobre el arco $AB$ y sean $O_1$ y $O_2$ los incentros de los triángulos $ACX$ y $BCX$, respectivamente. Demostrar que las circunferencias circunscritas del triángulo $O_1O_2X$ pasa por un punto fijo de $\Omega$ que no depende de $X$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 314
Sea $ABC$ un triángulo escaleno y denotemos por $G$, $I$ y $H$, respectivamente, su baricentro, incentro y ortocentro. Demostrar que el ángulo $\angle GIH$ es obtuso.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 312
Sea $ABC$ un triángulo cuyos vértices tienen coordenadas enteras en el plano y sea $S$ el área de $ABC$. Demostrar que si $b+a^2<8S+1$, entonces $A$, $B$ y $C$ son vértices de un cuadrado.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 311
Sean $ABCD$ un cuadrilátero que admite circunferencia circunscrita y $E$, $F$ puntos variables en los lados $AB$ y $CD$, respectivamente, tales que $\frac{AE}{EB}=\frac{CF}{FD}$. Sea $P$ un punto del segmento $EF$ tal que $\frac{PE}{PF}=\frac{AB}{CD}$. Probar que la razón entre las áreas de los triángulos $APD$ y $BPC$ no depende de la elección de los puntos $E$ y $F$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre