OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Probemos por tanto la igualdad (b) para lo que supondremos sin perder generalidad que en la recta $PQ$ los puntos están en el orden $PEFQ$. Los triángulos $OBM$ y $AEC$ son semejantes ya que son rectángulos y $\angle BAF=\angle BOM$ (por ser este último la mitad del ángulo central correspondiente al primero), luego \[\frac{OM}{BM}=\frac{AE}{CE}=\frac{AE\cdot AB}{CE\cdot AB}=\frac{AE\cdot AB}{AD\cdot BC},\] donde hemos usado que $CE\cdot AB=AD\cdot BC$ (esta cantidad es el doble del área de $ABC$). Usando ahora que $BC=2\cdot BM$, podemos despejar $2\cdot OM\cdot AD=AE\cdot AB$. Para probar finalmente que $AE\cdot AB=AP^2$, basta observar que los triángulos $APB$ y $AEP$ son semejantes lo cual se deduce de que comparten un ángulo (en el vértice $A$) y de que $\angle APB=\angle AEP$. Para ver esto último, observemos que $\angle APB=180-\angle ACB$ por arco capaz y $\angle AEP=180-\angle AEF$. Como el cuadrilátero $AEHF$ es inscriptible, otra vez por arco capaz tendremos que $\angle AEF=\angle AHF=90-\angle CAD=\angle ACB$, con lo que el problema queda resuelto.
Llamemos $a$ y $b$ a los catetos y $h$ a la altura, de forma que, de los dos triángulos rectángulos que se forman, el de hipotenusa $a$ tiene triple área que el de hipotenusa $b$. Llamemos también $x$ e $y$ a los segmentos en que queda dividida la hipotenusa del triángulo original por la altura correspondientes a los catetos $a$ y $b$, respectivamente. Como el área de un triángulo rectángulo es la mitad del producto de sus catetos, deducimos que $x=3y$ y, como $x+y=1$, tenemos que $x=\frac{3}{4}$ e $y=\frac{1}{4}$.
Usando el Teorema de Pitágoras en los dos triángulos formados, tenemos que $b^2-y^2=h^2=a^2-x^2$, de donde podemos despejar $a^2-b^2=x^2-y^2=\frac{1}{2}$. Otra vez por el Teorema de Pitágoras, ahora en el triángulo original, deducimos que $a^2+b^2=1$ y, junto con $a^2-b^2=\frac{1}{2}$, podemos despejar $a=\frac{\sqrt{3}}{2}$ y $b=\frac{1}{2}$.
El apartado (b) es inmediato puesto que si \(r=1\), el triángulo es equilátero (observar que \(1\leq r_0\)) y, si \(r\gt 1\), entonces \(a\lt ar\lt ar^2\), es decir, el triángulo es escaleno. En esta situación, el triángulo nunca puede ser isósceles.