Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 2357
Un tetraedro $T'$ tiene todos sus vértices en el interior o sobre las caras de otro tetraedro $T$. Demostrar que la suma de las longitudes de las aristas de $T'$ es menor que $\frac{4}{3}$ de la suma de las longitudes de las aristas de $T$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2355
Dado un número real $a$, denotaremos por $\{a\}$ la diferencia en valor absoluto entre $a$ y el entero más cercano a $a$ (por ejemplo, $\{3.8\}=0.2$ y $\{-5.4\}=0.4$). Demostrar que \[\{a\}\leq\frac{|a(a-1)\cdots(a-n)|}{n!2^n},\] para cualquier número real $a$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2350
Demostrar que \[2^{x^{1/12}}+2^{x^{1/4}}\geq 2^{1+x^{1/6}}\] para todo número real positivo $x$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2304
Hallar el menor valor posible de \[4+x^2y^4+x^4y^2-3x^2y^2,\] siendo $x$ e $y$ números reales. Demostrar que este polinomio no se puede expresar como suma de cuadrados de polinomios.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2299
Una persona dibuja un polígono convexo en el interior de un círculo de radio $1$. Otra persona intenta copiar este polígono empezando en uno de sus vértices y después dibujando los lados sucesivamente. Esta segunda persona copia los ángulos perfectamente pero comete un error en la longitud de cada lado. El cociente entre la longitud que pinta y la original está entre $1-p$ y $1+p$ para cierto parámetro $p\gt 0$. Como resultado, el último vértice que pinta, que debería cerrar el polígono, termina a distancia $d$ del punto inicial. Demostrar que $d\lt 4p$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre