Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Inicio
—20
—5
Problema 2716
Una sucesión de números reales $a_1,a_2,\ldots$ se llama mapuche si $a_1\gt 0$ y además para todo $n\geq 2$ se tiene que \[a_1a_2\cdots a_n=a_1+a_2+\ldots+a_{n-1}.\] ¿Cuál es la máxima cantidad de enteros que puede tener una sucesión mapuche?

Nota. El producto tiene $n$ factores y la suma tiene $n-1$ sumandos.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2709
Supongamos que la sucesión de enteros no negativos $\{a_1, a_2, \dots, a_{1997}\}$ satisface \[a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1\] para todo $i, j \geq 1$ con $i + j \leq 1997$. Probar que existe $k$ tal que $a_k = 0$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2704
Sea $p_1, p_2, p_3, \dots$ la lista de números primos en orden creciente y sea $x_0$ un número real entre $0$ y $1$. Para cada entero positivo $k$, se define \[x_k = \begin{cases} 0 & \text{si } x_{k-1} = 0, \\ \left\{ \frac{p_k}{x_{k-1}} \right\} & \text{si } x_{k-1} \neq 0, \end{cases}\] donde $\{x\}=x - \lfloor x \rfloor$ denota la parte fraccionaria de $x$. Hallar razonadamente todos los valores de $x_0$ en el intervalo $(0, 1)$ para los cuales la secuencia $x_0, x_1, x_2, \dots$ es igual a $0$ a partir de un término en adelante.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2698
Probar que la media aritmética de los números $n \sin n^\circ$ para $n\in\{2, 4, 6, \dots, 180\}$ es igual a $\cot 1^\circ$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2682
Hallar el menor entero positivo $k$ para el que existe una función $f: \mathbb{Z} \to \{1, 2, \dots, k\}$ con la propiedad de que $f(x) \neq f(y)$ siempre que $|x - y| \in \{5,7,12\}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre