Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1599
Determinar una condición necesaria y suficiente para que los afijos de tres números complejos $z_1,z_2,z_3$ sean los vértices de un triángulo equilátero.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1598
Dados números reales $a_1,a_2,\ldots,a_n$, demostrar sin utilizar derivadas, que el valor de $x$ que hace mínima la suma \[(x-a_1)^2+(x-a_2)^2+\ldots+(x-a_n)^2\] es precisamente la media aritmética de los números dados.
pista
Sin soluciones
info
Pista. Expresa la función a minimizar como un polinomio de segundo grado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1596
Utilizando una escalera mecánica para bajar a la estación del Metro y andando con paso regular, observo que necesito 50 escalones para bajar. Si luego vuelvo a subirla corriendo, a una velocidad $5$ veces mi paso normal anterior, compruebo que necesito $125$ escalones para llegar arriba. ¿Cuántos escalones visibles tiene la escalera mecánica cuando se encuentra parada?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1593
Demostrar que todas las matrices cuadradas de la forma \[\begin{pmatrix}a&b\\-b&a\end{pmatrix}\] (siendo $a,b\in\mathbb{R}$) forman un cuerpo conmutativo $\mathbb{K}$ cuando se consideran las operaciones usuales de suma y producto de matrices. Probar también que, si $A\in\mathbb{K}$ es un elemento no nulo de dicho cuerpo, existen dos matrices de $\mathbb{K}$ tales que el cuadrado de cada una sea igual a $A$.
pista
Sin soluciones
info
Pista. Observa que cuerpo en cuestión $\mathbb{K}$ es isomorfo al cuerpo de los números complejos sin más que realizar la identificación \[\begin{pmatrix}a&b\\-b&a\end{pmatrix}\ \longleftrightarrow\ a+ib.\] Resuelve el problema en los complejos y trasládalo a $\mathbb{K}$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1592
Dado el determinante de orden $n$ \[\left|\begin{matrix} 8&3&3&\ldots&3\\ 3&8&3&\ldots&3\\ 3&3&8&\ldots&3\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 3&3&3&\ldots&8 \end{matrix}\right|,\] calcular su valor y determinar para qué valores de $n$ dicho valor es múltiplo de $10$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre