Un semáforo instalado en un cruce principal de una vía en la que se circula en ambos sentidos permanece en rojo $30$s y en verde otros $30$s, alternativamente. Se desea instalar otro semáforo en la misma vía, para un cruce secundario situado a $400$m de distancia del primero, que funcione con el mismo período de 1 min de duración. Se quiere que los coches que circulan a $60$km/h por la vía en cualquiera de los dos sentidos y que no se tienen que parar si sólo hubiese el semáforo del cruce principal tampoco se tengan que parar después de instalar el del cruce secundario. ¿Cuántos segundos puede estar encendido el rojo en el semáforo secundario?
Sin pistas
Sin soluciones
infoProblema 1439problema obsoleto Se sabe que la función real $f(t)$ es monótona creciente en el intervalo $−8\leq t\leq 8$, pero no se sabe nada de lo que ocurre fuera de éste. ¿En qué intervalo de valores de $x$ se puede asegurar que sea monótona creciente la función $f(2x-x^2)$?
pistasolución 1info
Pista. Calcula cuándo $g(x)=2x-x^2$ cae en el intervalo $[-8,8]$ y también ten en cuenta su propia monotonía.
Solución. Observamos que la función $g(x)=2x-x^2=1-(x-1)^2$ toma el valor $-8$ en $x=-2$ y $x=4$, pero no toma el valor $8$ ya que tiene su máximo en $x=1$, donde vale $1$. Además, en $[-2,1]$ es creciente y en $[1,4]$ es decreciente. Por lo tanto:
- Fuera del intervalo $(-2,4)$ no sabemos la monotonía de $f(g(x))$ ya que desconocemos lo que le pasa a $f$ fuera del intervalo $[-8,8]$.
- Para $x,y\in[-2,1]$ con $x\lt y$, se tiene que $-8\leq g(x)\leq g(y)\leq 1$, luego $f(g(x))\leq f(g(y))$ y hemos probado que $f(g(x))$ es monótona creciente en $[-2,1]$.
- Para $x,y\in[1,4]$ con $x\lt y$, se tiene que $-8\leq g(y)\leq g(x)\leq 1$, luego $f(g(y))\leq f(g(x))$ y tenemos que $f(g(x))$ es monótona decreciente en $[1,4]$.
Por lo tanto, solo podemos asegurar que $f(2x-x^2)$ es monótona creciente en $[-2,1]$.