A un fabricante de tres productos cuyos precios por unidad son de $50$, $70$ y $65$ pesetas, le pide un detallista $100$ unidades, remitiéndole en pago de las mismas $6850$ pesetas, con la condición de que mande el mayor número posible del producto de precio superior y las restantes de los otros dos. ¿Cuántas unidades deberá enviar de cada producto para servir el pedido?
pistasolución 1info
Pista. Si tomáramos $100$ productos de $70$ pesetas, costaría $7000$ el pedido total. Por lo tanto, hay que bajar de $7000$ a $6850$ pesetas usando el menor número posible de productos de $50$ y $65$ pesetas.
Solución. Pongamos que fabrica $x$ unidades del producto más caro, $y$ unidades del intermedio y $z$ unidades del más económico, luego deben cumplirse las siguientes restricciones:
\[\left\{\begin{array}{l}70x+65y+50z=6850,\\x+y+z=100\end{array}\right.\]
Multiplicando la segunda ecuación por $70$ y restándole al resultado la primera, llegamos tras simplificar a la siguiente condición
\[y+4z=30.\]
Queremos la solución de esta ecuación en números enteros que minimice $y+z$ (lo que equivale a maximizar $x$). Claramente, debemos tomar $z$ lo mayor posible y completar con $y$. El mayor valor de $z$ que hace que $y+4z$ no pase de $30$ es $z=7$, lo que nos deja con $y=2$ y $x=100-x-y=91$.
Por lo tanto, debemos tomar $91$ unidades del producto que vale 70 pesetas, $2$ unidades del que vale $65$ pesetas y $7$ unidades del que vale $50$ pesetas.
Es bien sabido que si $\frac{p}{q}=\frac{r}{s}$, entonces ambas razones son iguales a $\frac{p-r}{q-s}$. Escribimos ahora la igualdad
\[\frac{3x-b}{3x-5b}=\frac{3a-4b}{3a-8b}.\]
Por la propiedad anterior, ambas fracciones deben ser iguales a
\[\frac{3x-b-3a+4b}{3x-5b-3a+8b}=\frac{3x-3a+3b}{3x-3a+3b}=1,\]
mientras que las propuestas son de ordinario distintas de la unidad. Explicar con claridad a qué se debe este resultado.
pistasolución 1info
Pista. Se está produciendo una indeterminación $\frac{0}{0}$ en algún momento.
Solución. Tenemos que
\[\frac{3x-b}{3x-5b}=\frac{3a-4b}{3a-8b}\ \Longleftrightarrow\ (3x-b)(3a-8b)=(3a-4b)(3x-5b)\ \Longleftrightarrow\ b(x-a+b)=0.\]
Por lo tanto, con la hipótesis de que ambas razones son iguales, necesariamente $b=0$ (en cuyo caso sí se tiene claramente que ambas son igual a $1$ y no hay paradoja) o bien $x-a+b=0$ (en cuyo caso la última igualdad no es $1$ ya que el denominador es cero y no puede hacerse el razonamiento).
En otras palabras, si $\frac{p}{q}=\frac{r}{s}$ entonces estas razones coinciden con $\frac{p-r}{q-s}$ con la condición adicional de que $q-s$ no sea cero.