Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 1438
Determinar los valores de $a,b,c$ para que la representación gráfica de la función \[y= ax^3 + bx^2 + cx\] tenga un punto de inflexión en el punto de abscisa $x=3$, con recta tangente en dicho punto de ecuación $x − 4y + 1 = 0$. Dibujar después la gráfica correspondiente.
pistasolución 1info
Pista. Escribe las condiciones del enunciado como un sistema de tres ecuaciones lineales en las incógnitas $a,b,c$.
Solución. Consideremos $f(x)=ax^3+bx^2+c$. La ecuación de la recta tangente en $x=3$ es \[y=f(3)+f'(3)(x-3)=\frac{1}{4}(x+1),\] luego por comparación de coeficientes, tenemos que $f'(3)=\frac{1}{4}$ y $f(3)-3f'(3)=\frac{1}{4}$, de donde deducimos que $f(3)=1$. Finalmente, el punto de inflexión nos da $f''(3)=0$. Ahora podemos usar que el polinomio puede expresarse como suma de potencias de $x-3$ de forma que \begin{align*} f(x)&=f(3)+f'(3)(x-3)+\frac{f''(3)}{2}(x-3)^2+\frac{f'''(3)}{6}(x-3)^3 \\ &=1+\frac{1}{4}(x-3)+\frac{f'''(3)}{6}(x-3)^3 \end{align*} Como quiera que $f(0)=0$, tenemos que $0=\frac{1}{4}-\frac{9}{2}f'''(3)$, de donde $f'''(3)=\frac{1}{18}$. Por lo tanto, la función que buscamos es \[f(x)=1+\frac{1}{4}(x-3)+\frac{1}{108}(x-3)^3=\frac{x}{2}-\frac{x^2}{12}+\frac{x^3}{108}\] y se tiene que $a=\frac{1}{2}$, $b=\frac{-1}{12}$ y $c=\frac{1}{108}$.

Ahora bien, $f'(x)=\frac{1}{4}+\frac{1}{36}(x-3)^2$ nunca se anula, luego se trata de una función estrictamente creciente que corta al eje $OX$ únicamente en el origen, con único punto de inflexión en $x=3$ (es un polinomio cúbico). Dando unos cuantos valores a $x$ se puede esbozar fácilmente la gráfica de la función, que se indica a continuación.

imagen

Nota. También se puede trabajar directamente con las potencias de $x$ en lugar de $x-3$, aunque es interesante conocer cómo se desarrolla un polinomio en un punto dado.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1437
Determinar una progresión geométrica de siete términos, sabiendo que la suma de los tres primeros es igual a $7$ y la suma de los tres últimos es igual a $112$.
pistasolución 1info
Pista. Plantea los datos que te dan como un sistema de ecuaciones con incógnitas el término inicial y la razón de la progresión.
Solución. Si llamamos $a,ar,ar^2,\ldots,ar^6$ a los términos de la sucesión, las condiciones del enunciado se traducen en el sistema de ecuaciones \[\left\{\begin{array}{l} a(1+r+r^2)=7,\\ a(r^4+r^5+r^6)=112. \end{array}\right.\] Dividiendo la segunda ecuación entre la primera, llegamos a que $r^4=\frac{112}{7}=16$, de donde deducimos que $r=\pm 2$.
  • Si $r=2$, la primera ecuación queda $a(1+2+4)=7$, lo que nos da $a=1$ y obtenemos la progresión geométrica $\{1,2,4,8,16,32,64\}$.
  • Si $r=-2$, entonces la primera ecuación nos da $a(1-2+4)=7$, de donde $a=\frac{7}{3}$ y nos queda la progresión geométrica $\{\frac{7}{3},\frac{-14}{3},\frac{28}{3},\frac{-56}{3},\frac{112}{3},\frac{-224}{3},\frac{448}{3}\}$.

Estas son las dos soluciones posibles al problema.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1434problema obsoleto
Se quiere colgar un peso $P$ de modo que quede $7$ m por debajo de un techo. Para ello se suspende mediante un cable vertical sujeto al punto medio $M$ de una cadena colgada por sus extremos de dos puntos del techo $A$ y $B$ distantes entre sí $4$ m. El precio del cable $PM$ es de $p$ pesetas por metro y el de la cadena $AMB$ es de $q$ pesetas por metro. Se pide:
  1. Determinar las longitudes del cable y de la cadena para obtener el precio más económico de la instalación.
  2. Discutir la solución para los distintos valores de la relación $p/q$ de ambos precios.

Nota: Se supone que el peso es lo suficientemente grande para poder considerar como rectilíneos los segmentos de cadena $AM$ y $MB$.

pistasolución 1info
Pista. Plantea el problema como la minimización de de la función precio.
Solución. Sea $Q$ el punto medio de $AB$ y llamemos $x=QM$, de forma que queremos minimizar el valor de la función \[f(x)=2q\sqrt{x^2+4}+(7-x)p\] cuando $x$ varía en el intervalo $[0,7]$ (aquí hemos usado el teorema de Pitágoras para calcular $AM=MB=\sqrt{x^2+4}$). La función es infinitamente derivable y podemos calcular sus primeras dos derivadas fácilmente: \[f'(x)=\frac{2qx}{\sqrt{x^2+4}}-p,\qquad f''(x)=\frac{8q}{(x^2+4)^{3/2}}.\] Observamos que $f''(x)\gt 0$, luego se trata de una función estrictamente convexa y tendrá un único mínimo absoluto en $\mathbb{R}$ independientemente de los valores de $p$ y $q$. Ahora la observación clave es darse cuenta de que la convexidad también nos dice que en dicho mínimo pasa de decreciente a creciente, luego será suficiente estudiar los valores de la derivada en $x=0$ y $x=7$ para discutir el problema. Tenemos que $f'(0)=-p\lt 0$ y $f'(7)=\frac{14q}{\sqrt{53}}-p$, lo que nos permite distinguir dos casos:
  • Si $\frac{14q}{\sqrt{53}}-p\leq 0$, es decir, $\frac{p}{q}\geq\frac{14}{\sqrt{53}}$, entonces $f(x)$ es estrictamente decreciente en $[0,7]$ y tendrá su mínimo en $x=7$, esto es, en este caso el cable será de longitud $0$.
  • Si $\frac{14q}{\sqrt{53}}-p\gt 0$, es decir, $0\lt\frac{p}{q}\lt\frac{14}{\sqrt{53}}$, entonces $f'(7)\gt 0$ y el mínimo será interior. Podemos resolver $f'(x)=0$ para obtener que este ocurre para $x=\frac{2p}{\sqrt{4q^2-p^2}}$, es decir, cuando el punto $M$ está a esta distancia del techo.
imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1431
A un fabricante de tres productos cuyos precios por unidad son de $50$, $70$ y $65$ pesetas, le pide un detallista $100$ unidades, remitiéndole en pago de las mismas $6850$ pesetas, con la condición de que mande el mayor número posible del producto de precio superior y las restantes de los otros dos. ¿Cuántas unidades deberá enviar de cada producto para servir el pedido?
pistasolución 1info
Pista. Si tomáramos $100$ productos de $70$ pesetas, costaría $7000$ el pedido total. Por lo tanto, hay que bajar de $7000$ a $6850$ pesetas usando el menor número posible de productos de $50$ y $65$ pesetas.
Solución. Pongamos que fabrica $x$ unidades del producto más caro, $y$ unidades del intermedio y $z$ unidades del más económico, luego deben cumplirse las siguientes restricciones: \[\left\{\begin{array}{l}70x+65y+50z=6850,\\x+y+z=100\end{array}\right.\] Multiplicando la segunda ecuación por $70$ y restándole al resultado la primera, llegamos tras simplificar a la siguiente condición \[y+4z=30.\] Queremos la solución de esta ecuación en números enteros que minimice $y+z$ (lo que equivale a maximizar $x$). Claramente, debemos tomar $z$ lo mayor posible y completar con $y$. El mayor valor de $z$ que hace que $y+4z$ no pase de $30$ es $z=7$, lo que nos deja con $y=2$ y $x=100-x-y=91$.

Por lo tanto, debemos tomar $91$ unidades del producto que vale 70 pesetas, $2$ unidades del que vale $65$ pesetas y $7$ unidades del que vale $50$ pesetas.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1429
Un tronco de cono de revolución tiene su base mayor de radio $r$ y sus generatrices forman con el plano de la base un ángulo cuya tangente vale $m$. Este tronco de cono está formado por un material de densidad $d$ y su base menor está recubierta por una lámina cuya masa es de $p\,$g/cm$^2$ . ¿Cuál es la altura del tronco para la cual la masa total es máxima?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre