OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Por lo tanto, no puede ser $0\lt a\lt 1$ ya que entonces tendríamos $a=f(c)\geq 1$. Tampoco puede ser $a\gt 1$ ya que entonces tendríamos que $a=f(c)\lt c=f(b)\lt b=f(a)\lt a$, que es un absurdo. Sólo nos queda la posibilidad $a=1$, que nos lleva a que $b=f(a)=1$ y $c=f(b)=1$. Deshaciendo el cambio inicial, obtenemos la única solución al sistema $x=y=z=0$.
Nota. El método de iterar una función y estudiar si podemos volver al mismo valor es muy estándar y conviene tenerlo en cuenta para muchos problemas de olimpiada. Esencialmente, tenemos que estudiar los puntos fijos de la función y si es mayor o menor que la identidad en los distintos intervalos para saber si la iteración hace crecer o decrecer los valores en determinados intervalos.
Nota. Hemos usado el hecho muy conocido de que si $a$ y $n$ son números naturales y $\sqrt[n]{a}$ es racional, entonces $a$ es la potencia $n$-ésima de un entero. Esto se demuestra fácilmente escribiendo $\sqrt[n]{a}=\frac{r}{s}$ equivalentemente como $s^na=r^n$. Si ahora miramos en esta última ecuación el exponente de cualquier primo, el exponente en $a$ tiene que ser múltiplo de $n$.
Nota. Aquí, $\mathbb{N}_0$ denota el conjunto de los números naturales incluyendo el cero. La función $f$ es creciente cuando $f(n)\geq f(m)$ siempre que $n\gt m$.
Tomando $m,n\geq n_0$, se tiene que $mn\geq n_0$, luego \[amn+b=f(mn)=f(n)+f(m)=a(m+n)+2b.\] Como esta igualdad se cumple para infinitos valores de $m$ y $n$, tiene que ser $a=b=0$, es decir $f(n)=0$ para todo $n\geq n_0$. El problema ya está casi listo porque, por un lado, $f(1)=f(1\cdot 1)=f(1)+f(1)$ nos dice que $f(1)=0$ y, por otro lado, $f(2^r)=rf(2)$ tiene que ser cero para $r$ suficientemente grande tal que $2^r\gt n_0$, luego $f(2)$. Al ser $f(2)-f(1)=0$, tenemos que $f(n+1)=f(n)$ para todo $n\in\mathbb{N}$ y, por tanto, $f$ es la función constante $0$ (se comprueba trivialmente que cumple las condiciones del enunciado).
Nota. $\mathbb{N}_0$ el conjunto de los enteros no negativos y $\mathbb{Z}$ el conjunto de todos los enteros. Además, $\lfloor x\rfloor$ denota la parte entera de un número real $x$ y $\{x\}$ su parte decimal.