Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 879
Determinar si existen números enteros positivos $a$ y $b$ tales que todos los términos de la sucesión definida por $x_1=2010$, $x_2=2011$ y \[x_{n+2}=x_n+x_{n+1}+a\sqrt{x_nx_{n+1}+b}\quad \text{para todo }n\geq1,\] sean enteros.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 874
Sea $f:\mathbb{N}_0\to\mathbb{Z}$ la función que a cada elemento $n\in\mathbb{N}_0$ le asocia como imagen el entero $f(n)$ definido por \[f(n)=-f\left(\left\lfloor\frac{n}{3}\right\rfloor\right)-3\left\{\frac{n}{3}\right\}.\] Determina el menor entero $n$ tal que $f(n)=2010$.

Nota. $\mathbb{N}_0$ el conjunto de los enteros no negativos y $\mathbb{Z}$ el conjunto de todos los enteros. Además, $\lfloor x\rfloor$ denota la parte entera de un número real $x$ y $\{x\}$ su parte decimal.

pistasolución 1info
Pista. La función se escribe de forma muy sencilla en base $3$.
Solución. Escribamos $n$ en base $3$ con dígitos $a_k,a_{k-1},\ldots,a_2,a_1,a_0\in\{0,1,2\}$, siendo $a_0$ el de orden menor. Esto quiere decir que \[n=3^ka_k+3^{k-1}a_{k-1}+\ldots+3^2a_2+3a_1+a_0.\] Es inmediato entonces ver que \[\left\lfloor\frac{n}{3}\right\rfloor=3^{k-1}a_k+3^{k-2}a_{k-1}+\ldots+3a_2+a_1,\qquad 3\left\{\frac{n}{3}\right\}=a_0.\] Por tanto, cada vez que aplicamos $f$ eliminamos el dígito de la izquierda y sale sumando o restando dependiendo de en qué posición esté: \begin{align*} f(n)&=-f(3^{k-1}a_k+3^{k-2}a_{k-1}+\ldots+3a_2+a_1)-a_0\\ &=f(3^{k-2}a_k+3^{k-3}a_{k-1}+\ldots+a_2)+a_1-a_0\\ &=-f(3^{k-3}a_k+3^{k-4}a_{k-1}+\ldots+a_3)-a_2+a_1-a_0\\ &=\ldots=(-1)^{k+1}a_k+\ldots+a_3-a_2+a_1-a_0. \end{align*} Aunque está claro el proceso por el que hemos obtenido la fórmula anterior, también se puede formalizar fácilmente por inducción sobre $k$, el número de dígitos. El mínimo $n$ tal que $f(n)=2010$ se obtendrá minimizando los dígitos pares y maximizando los impares, es decir, tomando $a_{2j}=0$ y $a_{2j-1}=2$ de forma que haya $1005$ dígitos iguales a $2$. Esto nos da el número \begin{align*} n=202020\ldots 20_{(3)}&=666\ldots 6_{(9)}=6(1+9+\ldots+9^{1004})\\ &=6\frac{9^{1005}-1}{9-1}=\frac{3}{4}(9^{1005}-1). \end{align*}
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 871
Calcula las soluciones reales de la ecuación \[\sqrt[3]{1729-x}+\sqrt[3]{x}=19.\]
pistasolución 1info
Pista. Plantea un sistema de dos ecuaciones con las incógnitas $a=\sqrt[3]{1729-x}$ y $b=\sqrt[3]{x}$.
Solución. Llamamos $a=\sqrt[3]{1729-x}$ y $b=\sqrt[3]{x}$, luego podemos reescribir esa ecuación como el sistema de ecuaciones \[\left\{\begin{array}{l}a+b=19\\a^3+b^3=1729.\end{array}\right.\] Factorizando $a^3+b^3=(a+b)(a^2-ab+b^2)$, obtenemos que $a^2-ab+b^2=\frac{1729}{19}=91$. Restando a esta última expresión $a^2+2ab+b^2=(a+b)^2=361$, llegamos a que $-3ab=91-361=-270$, de donde $ab=90$. Tenemos, entonces que $a+b=19$ y $ab=90$, lo que nos dice que $a$ y $b$ son las soluciones de la ecuación $t^2-19t+90=0$. Usando la fórmula de la ecuación de segundo grado, se llega fácilmente a que $(a,b)=(9,10)$ o $(a,b)=(10,9)$. Como $x=b^3$, tenemos las posibles soluciones $x=1000$ y $x=729$ y se comprueba fácilmente que ambas efectivamente verifican la ecuación.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 866
Calcula las soluciones reales de la ecuación \[\sqrt[4]{97-x}+\sqrt[4]{x}=5.\]
pistasolución 1info
Pista. Plantea un sistema con las incógnitas $a=\sqrt[4]{97-x}$ y $b=\sqrt[4]{x}$.
Solución. Llamamos $a=\sqrt[4]{97-x}$ y $b=\sqrt[4]{x}$, con lo que la ecuación que nos dan se puede escribir de forma equivalente como el siguiente sistema: \[\left\{\begin{array}{l}a+b=5\\a^4+b^4=97\end{array}\right.\] Utilizando el binomio de Newton, podemos desarrollar \begin{align*} (a+b)^4&=a^4+4a^3b+6a^2b^2+4ab^3+b^4\\ &=a^4+b^4+4ab(a^2+b^2)+6a^2b^2\\ &=a^4+b^4+4ab((a+b)^2-2ab)+6a^2b^2\\ &=a^4+b^4+4ab(a+b)^2-2a^2b^2. \end{align*} Sustituyendo $a+b=5$ y $a^4+b^4=97$, obtenemos la siguiente ecuación de segundo grado en la incógnita $ab$, que podemos resolver fácilmente: \[(ab)^2-50ab+264=0\ \Longrightarrow\ ab=\frac{50\pm \sqrt{1444}}{2}=\begin{cases}44,\\6.\end{cases}\] Distinguimos dos casos:
  • Si $ab=44$, entonces tenemos la suma $a+b=5$ y el producto $ab=44$, lugo podemos despejar $a$ y $b$ como las soluciones de la ecuación de segundo grado $x^2-5x+44=0$. Esta ecuación no tiene soluciones reales.
  • Si $ab=6$, entonces $a$ y $b$ son las soluciones de la ecuación de segundo grado $x^2-5x+6=0$, es decir, $(a,b)=(2,3)$ o bien $(a,b)=(3,2)$. Como $x=b^4$, tenemos las soluciones $x=16$ y $x=81$, que claramente verifican la ecuación inicial.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 864
Hallar todos los números naturales $n$ que verifican la condición: \[\biggl\lfloor\frac{n}{2}\biggr\rfloor+\biggl\lfloor\frac{2n}{3}\biggr\rfloor =n+335.\]

Nota. $\lfloor x\rfloor$ denota la parte entera de un número real $x$.

pistasolución 1info
Pista. Distingue casos según el resto de dividir $n$ entre $6$.
Solución. Distinguimos casos según el resto de dividir $n$ entre $6$.
  • Si $n=6k$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k\rfloor=3k$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k\rfloor=4k$, luego la ecuación queda $7k=6k+335$, cuya solución es $k=335$. Tenemos así que $n=6\cdot 335=2010$.
  • Si $n=6k+1$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k+\frac{1}{2}\rfloor=3k$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k+\frac{2}{3}\rfloor=4k$, luego la ecuación queda $7k=6k+336$, cuya solución es $k=336$. Tenemos así que $n=6\cdot 336+1=2017$.
  • Si $n=6k+2$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k+1\rfloor=3k+1$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k+\frac{4}{3}\rfloor=4k+1$. La ecuación queda $7k+2=6k+337$, luego $k=335$ y $n=6\cdot 335+2=2012$.
  • Si $n=6k+3$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k+\frac{3}{2}\rfloor=3k+1$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k+2\rfloor=4k+2$. La ecuación queda $7k+3=6k+338$, luego $k=335$ y $n=6\cdot 335+3=2013$.
  • Si $n=6k+4$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k+2\rfloor=3k+2$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k+\frac{8}{3}\rfloor=4k+2$. La ecuación queda $7k+4=6k+339$, luego $k=335$ y $n=6\cdot 335+4=2014$.
  • Si $n=6k+5$, entonces $\lfloor\frac{n}{2}\rfloor=\lfloor 3k+\frac{5}{2}\rfloor=3k+2$ y $\lfloor\frac{2n}{3}\rfloor=\lfloor 4k+\frac{10}{3}\rfloor=4k+3$. La ecuación queda $7k+5=6k+340$, luego $k=335$ y $n=6\cdot 335+5=2015$.
Deducimos así que las soluciones son 2010, 2012, 2013, 2014, 2015 y 2017.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre