Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 800
Hallar las tangentes de los ángulos de un triángulo sabiendo que son números enteros positivos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 788
Hallar todas las soluciones reales de la ecuación \[3^{x^2-x-y}+3^{y^2-y-z}+3^{z^2-z-x}=1.\]
pistasolución 1info
Pista. Usa la desigualdad entre las medias aritmética y geométrica para probar que se cumple la desigualdad $\geq$ y analiza en qué casos se tiene una igualdad.
Solución. La desigualdad entre las medias aritmética y geométrica nos dice que \begin{align*} \frac{3^{x^2-x-y}+3^{y^2-y-z}+3^{z^2-z-x}}{3}&\geq\sqrt[3]{3^{x^2-x-y}\cdot 3^{y^2-y-z}\cdot 3^{z^2-z-x}}\\ &=3^{\frac{x^2-2x+y^2-2y+z^2-2z}{3}}=3^{\frac{(x-1)^2+(y-1)^2+(z-1)^2-3}{3}}\\ &=\tfrac{1}{3}\cdot 3^{\frac{(x-1)^2+(y-1)^2+(z-1)^2}{3}}\geq \frac{1}{3}. \end{align*} Por lo tanto, $3^{x^2-x-y}+3^{y^2-y-z}+3^{z^2-z-x}\geq 1$ para todo $x,y,z\in\mathbb{R}$ y, si la igualdad se alcanza, tiene que ser $(x-1)^2+(y-1)^2+(z-1)^2=0$, es decir, $x=y=z=1$. Como $x=y=z=1$ verifica la ecuación del enunciado, deducimos que esta es la única solución.

Nota. Las exponenciales pueden ocultar la aplicación de la desigualdad entre las medias aritmética-geométrica, pero una solución similar se tiene aplicando la desigualdade de Jensen a la función convexa $f(t)=3^t$. ¿Sabrías escribir los detalles?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 785
Encontrar todas las soluciones reales del sistema de ecuaciones \[\left\{\begin{array}{l} y^3-6x^2+12x-8=0,\\ z^3-6y^2+12y-8=0,\\ x^3-6z^2+12z-8=0.\end{array}\right.\]
pistasolución 1info
Pista. Cada una de las ecuaciones se parece mucho a $(t-2)^3=t^3-6t^2+12t-8$.
Solución. Consideremos la función \[f:\mathbb{R}\to\mathbb{R},\qquad f(t)=\sqrt[3]{6t^2-12t+8},\] con la que el problema se reduce encontrar $x,y,z\in\mathbb{R}$ tales que $y=f(x)$, $z=f(y)$ y $x=f(z)$, es decir, empezando en $x$ queremos volver a obtener $x$ tras aplicar tres veces la función. Observemos que tiene que ser $x\geq\sqrt[3]{2}$ ya que se debe cumplir que $x^3=6z^2-12z+8=6(z-1)^2+2\geq 2$. También tenemos que $f(x)=x$ se traduce en que $(x-2)^3=x^3-6x^2+12x-8=0$, luego $x=2$ es el único valor que cumple $f(x)=x$. Distingamos casos:
  • Si $\sqrt[3]{2}\leq x\lt 2$, entonces $(x-2)^3\leq 0$, luego $x^3\lt 6x^2+12x-8$ y, tomando raíces cúbicas, $x\lt f(x)$. Además, se tiene que $f(x)^3=6(x-1)^2+2\leq 6(2-1)+2=8$ (ya que esta parábola tiene su máximo en el $x=2$, el punto del intervalo $[\sqrt[3]{2},2]$ más alejado del vértice $x=1$). Deducimos que en este caso se cumple que \[\sqrt[3]{2}\leq x\lt f(x)\lt 2,\] luego no existen $y,z\in\mathbb{R}$ tales que $y=f(x)$, $z=f(y)$ y $x=f(z)$ puesto que tendríamos que $x\lt f(x)= y\lt f(y)= z\lt f(z)= x$ y esto es contradictorio.
  • Si $x\gt 2$, el razonamiento es parecido pero un poco más sencillo. Como en este caso $(x-2)^3\gt 2$, obtenemos directamente que $x^3\lt 6x^2-12x+8$ y, por tanto, $f(x)\gt x\gt 2$, lo que impide también la existencia de $y,z\in\mathbb{R}$ tales que $y=f(x)$, $z=f(y)$ y $x=f(z)$.

La única posibilidad que nos queda es $x=2$, que nos da $y=f(x)=f(2)=2$ y $z=f(y)=f(2)=2$. En consecuencia, $x=y=z=2$ es la única solución del sistema.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 781
Encontrar todas la soluciones reales $(x,y)$ del sistema de ecuaciones \[\left\{\begin{array}{l}x^2-xy+y^2=7,\\x^2y+xy^2=-2.\end{array}\right.\]
pistasolución 1info
Pista. Transforma el sistema en otro sistema con incógnitas $s=x+y$ y $p=xy$.
Solución. Si consideramos las nuevas variables $s=x+y$ y $p=xy$ (suma y producto), el sistema se puede reescribir como \[\left\{\begin{array}{l}s^2-3p=7,\\sp=-2.\end{array}\right.\] Despejamos $p=\frac{s^2-7}{3}$ en la primera ecuación y sustituimos en la segunda para obtener $(s^2-7)s=-6$ o, lo que es lo mismo, $s^3-7s+6=0$. Por Ruffini obtenemos rápidamente la factorización $s^3-7s+6=(s-1)(s-2)(s+3)$, lo que nos da tres posibilidades:
  • Si $s=1$, entonces $p=\frac{s^2-7}{3}=-2$. Ahora bien, conociendo la suma y el producto, las incógnitas originales $x$ e $y$ son las soluciones de la ecuación $z^2-sz+p=0$. En este caso, esta última ecuación es $z^2-z-2=0$, que tiene soluciones $z=-1$ y $z=2$, lo que nos da las soluciones $(x,y)=(-1,2)$ y $(x,y)=(2,-1)$.
  • Si $s=2$, entonces $p=\frac{s^2-7}{3}=-1$, luego $x$ e $y$ son las soluciones de $z^2-2z-1=0$, que son $z=1\pm\sqrt{2}$. Esto nos da otras dos soluciones al sistema: $(x,y)=(1+\sqrt{2},1-\sqrt{2})$ y $(x,y)=(1-\sqrt{2},1+\sqrt{2})$.
  • Si $s=-3$, entonces $p=\frac{s^2-7}{3}=\frac{2}{3}$, luego $x$ e $y$ son las soluciones de $z^2+3z+\frac{2}{3}=0$, es decir, $z=\frac{-1}{6}(9\pm\sqrt{57})$. Esto nos da las dos últimas soluciones al sistema: $(x,y)=(frac{1}{6}(9+\sqrt{57}),frac{-1}{6}(9-\sqrt{57}))$ y $(x,y)=(frac{-1}{6}(9-\sqrt{57}),frac{-1}{6}(9+\sqrt{57}))$.

Esto nos da un total de seis soluciones al sistema.

Nota. En los sistemas de ecuaciones con dos incógnitas que son polinómicos y simétricos (cambiar $x$ por $y$ no afecta al sistema), cambiar a la suma-producto suele simplificar la discusión. En cualquier caso, es muy importante saber que tener la suma y el producto equivale a tener las dos incógnitas a través de la ecuación de segundo grado.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 777
Los números reales no nulos $a$ y $b$ verifican la igualdad \[\frac{a^2b^2}{a^4-2b^4}=1.\] Encontrar, razonadamente, todos los valores tomados por la expresión \[\frac{a^2-b^2}{a^2+b^2}.\]
pistasolución 1info
Pista. Transforma la igualdad inicial en una ecuación bicuadrática en la incógnita $\frac{a}{b}$.
Solución. Podemos transformar la ecuación dada como sigue: \begin{align*} \frac{a^2b^2}{a^4-2b^4}=1&\ \Longleftrightarrow\ a^2b^2=a^4-2b^4\\ &\ \Longleftrightarrow\ a^4-a^2b^2-2b^4=0\\ &\ \Longleftrightarrow\ \left(\tfrac{a}{b}\right)^4-\left(\tfrac{a}{b}\right)^2-2=0. \end{align*} En el último paso, hemos dividido por $b^4$ de forma que obtenemos una ecuación bicuadrática en la incógnita $\frac{a}{b}$. Usando la fórmula para la ecuación de segundo grado, tenemos que \[\frac{a^2}{b^2}=\frac{1\pm\sqrt{9}}{2}=\frac{1\pm 3}{2}=2.\] Nos hemos quedado con la solución positiva puesto que $\frac{a^2}{b^2}$ no puede ser negativo. Con esto nos basta para hallar el único valor posible de la expresión dada puesto que \[\frac{a^2-b^2}{a^2+b^2}=\frac{\frac{a^2}{b^2}-1}{\frac{a^2}{b^2}+1}=\frac{2-1}{2+1}=\frac{1}{3}.\]

Nota. Este argumento nos dice que todos los números reales que cumplen la condición dada son los que cumplen $a^2=2b^2$, es decir $a=\pm\sqrt{2}b$. Observemos que, para estos números, no se anula el denominador $a^4-2b^4$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre