Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 997
Hemos empezado la Olimpiada Matemática puntualmente a las 9:00, como he comprobado en mi reloj, que funcionaba en ese momento correctamente. Cuando he terminado, a las 13:00, he vuelto a mirar el reloj y he visto que las manecillas se habían desprendido de su eje pero manteniendo la posición en la que estaban cuando el reloj funcionaba. Curiosamente las manecillas de las horas y de los minutos aparecían superpuestas exactamente, una sobre otra, formando un ángulo (no nulo) menor que $120^\circ$ con el segundero. ¿A qué hora se me averió el reloj?

Nota. Dar la respuesta en horas, minutos y segundos con un error máximo de un segundo; se supone que, mientras funcionaba el reloj, las manecillas avanzaban de forma continua.

pistasolución 1info
Pista. Calcula los tres instantes exactos en que las manecillas de las horas y los minutos están perfectamente superpuestas.
Solución. Simplemente imaginándonos unas manecillas de reloj nos damos cuenta de que estas están superpuestas tres veces en el intervalo de las 9:00 a las 13:00: la primera vez sobre las 9:50, la segunda sobre las 10:55 y la tercera exactamente a las 12:00. Esta última no puede ser la solución ya que a las 12:00 el segundero también está alineado con las otras manecillas.

Una forma muy ingeniosa de calcular los otros instantes de forma exacta es darse cuenta de que entre las 00:00 y las 12:00, las manecillas de las horas y los minutos se alinean exactamente 12 veces (contando las 00:00 y las 12:00) luego esto ocurre cada $\frac{12}{11}$ de hora. Podemos proceder como sigue:

  • La vez anterior a las 12 en que ocurre el alineamiento horas-minutos es a las $12-\frac{12}{11}=10+\frac{10}{11}$ horas. La fracción $\frac{10}{11}$ nos da $60\cdot\frac{10}{11}=\frac{600}{11}=54+\frac{6}{11}$ minutos y los $\frac{6}{11}$ minutos nos dan $60\cdot\frac{6}{11}=\frac{360}{11}=32+\frac{8}{11}$ segundos. El ángulo que forma el segundero con el minutero es de $6\cdot[(54+\frac{6}{11})-(32+\frac{8}{11})]=\frac{1440}{11}=130+\frac{10}{11}$ grados, que es mayor que $120^\circ$. Esta solución tenemos que descartarla pues.
  • La siguiente vez (hacia atrás) que ocurre el alineamiento es a las $12-\frac{24}{11}=9+\frac{9}{11}$ horas. La fracción $\frac{9}{11}$ nos da $60\cdot\frac{9}{11}=\frac{540}{11}=49+\frac{1}{11}$ minutos y los $\frac{1}{11}$ minutos nos dan $60\cdot\frac{1}{11}=\frac{60}{11}=5+\frac{5}{11}$ segundos. El ángulo que forma el segundero con el minutero es claramente menor que $120^\circ$ ya que las manecillas de las horas y minutos están aproximadamente en el 49 y las de los segundos en el 5 (puede calcularse el ángulo exacto como en el caso anterior).
Deducimos entonces que la hora exacta a la que se estropeó el reloj fue a las 9:49:05, con un error de $\frac{5}{11}\lt 1$ segundos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 996
Con baldosas cuadradas de lado un número exacto de unidades se ha podido embaldosar una habitación de superficie $18144$ unidades cuadradas de la siguiente manera: el primer día se puso una baldosa, el segundo dos baldosas, el tercero tres, etc. ¿Cuántas baldosas fueron necesarias?
pistasolución 1info
Pista. El problema equivale a la ecuación $(1+2+\ldots+k)n^2=18144=2^5\cdot 3^4\cdot 7$.
Solución. Supongamos que las baldosas cuadradas tienen dimensiones $n\times n$. El primer día se cubren $n^2$ unidades cuadradas, el segundo $2n^2$, el tercero $3n^2$, y así sucesivamente hasta el $k$-ésimo día en que se cubren $kn^2$. De esta forma, el problema equivale a la ecuación \[(1+2+\ldots+k)n^2=18144=2^5\cdot 3^4\cdot 7.\] Como $1+2+\ldots+k=\frac{1}{2}k(k+1)$, esto equivale a \[k(k+1)n^2=2^6\cdot 3^4\cdot 7.\] Vistos los exponentes y que $k$ o $k+1$ son pares, sólo hay unas pocas posibilidades para el factor $n^2$:
  • Si $n^2=1$, la ecuación queda $k^2+k=36288$.
  • Si $n^2=2^2$, la ecuación queda $k^2+k=9072$.
  • Si $n^2=2^4$, la ecuación queda $k^2+k=2268$.
  • Si $n^2=3^2$, la ecuación queda $k^2+k=4032$.
  • Si $n^2=2^2\cdot 3^2$, la ecuación queda $k^2+k=1008$.
  • Si $n^2=2^4\cdot 3^2$, la ecuación queda $k^2+k=112$.
  • Si $n^2=3^4$, la ecuación queda $k^2+k=448$.
  • Si $n^2=2^2\cdot 3^4$, la ecuación queda $k^2+k=112$.
  • Si $n^2=2^4\cdot 3^4$, la ecuación queda $k^2+k=28$.
De todas estas ecuaciones, la única que tiene solución entera es para $n^2=3^2=9$, en la que tenemos que $k=63$ es la única solución positiva. Por tanto, fueron necesarias $\frac{1}{2}k(k+1)=2016$ de tamaño $3\times 3$.

Nota. ¿Se te ocurre alguna forma de descartar alguno de los nueve casos sin tener que resolver la ecuación de segundo grado?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 992
Sean $\alpha$ y $\beta$ raíces del polinomio $x^2-qx+1$, donde $q$ es un número racional mayor que $2$. Se define $s_1=\alpha+\beta$, $t_1=1$ y, para cada entero $n\geq 2$, \[s_n=\alpha^n+\beta^n,\qquad t_n=s_{n-1}+2s_{n-2}+\ldots+(n-1)s_1+n.\] Demuestre que, para todo $n$ impar, $t_n$ es el cuadrado de un número racional.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 984
Encuentra todos los enteros positivos $n$ que verifican \[n=2^{2x-1}-5x-3=(2^{x-1}-1)(2^x+1)\] para algún entero positivo $x$.
pistasolución 1info
Pista. Despeja la exponencial $2^x$ en la ecuación y observa que debe ser igual a un número que por lo general es menor que la exponencial
Solución. La ecuación se reescribe como \[2^{2x-1}-5x-3=2^{2x-1}+2^{x-1}-2^x-1,\] luego podemos simplificar para obtener \[2^{x-1}-2^x+5x+2=0\ \Leftrightarrow\ 2^{x-1}=5x+2.\] Para $x=1,2,3,4,5$, el miembro de la derecha es igual a $7,12,17,22,27$, que no son potencias de $2$, si bien para $x=6$ tenemos una solución ya que ambos miembros son iguales a $32$. Para $x\geq 7$, probaremos por inducción que $2^{x-1}\gt 5x+2$. El caso base es $x=7$ y tenemos que $2^{x-1}=64$ mientras que $5x+2=37$. Supuesto que la desigualdad $2^{x-1}\gt 5x+2$ es cierta para algún $x\geq 7$, queremos probar la desigualdad para $x+1$. Se tiene que \[2^x=2\cdot 2^{x-1}\stackrel{(\star)}{\gt}2\cdot(5x+2)=10x+4\gt 5x+5x+4\gt 5x+7,\] donde en $(\star)$ hemos usado la hipótesis de inducción.

Esto nos da la única solución $x=6$, que nos lleva a que \[n=2^{2\cdot 6-1}-5\cdot 6-3=2015.\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 982
Hallar todas las aplicaciones $f:\mathbb{Z}\to\mathbb{Z}$ que verifican \[f(n)+f(n+1)=2n+1\] para cualquier entero $n$ y además $f(1)+f(2)+\ldots+f(63)=2015$.
pistasolución 1info
Pista. Observa que $f(n)$ está determinada por el valor de $f(0)$.
Solución. Cambiando $n$ por $n+1$ obtenemos la igualdad $f(n+1)+f(n+2)=2n+3$. Si a esta le restamos la ecuación del enunciado, obtenemos que $f(n+2)=f(n)+2$ para todo entero $n$. De aquí se deduce fácilmente por inducción sobre $k$ que \[f(2k)=2k+f(0),\qquad f(2k+1)=2k+f(1).\] Por tanto, $a=f(0)$ y $b=f(1)$ determinan completamente a la función y verifican $a+b=1$ (haciendo $n=0$ en la ecuación funcional original). Si imponemos la otra condición del enunciado, tenemos que \begin{align*} 2015&=f(1)+f(2)+\ldots+f(63)\\ &=31a+2+4+\ldots+62+32b+2+4+\ldots+62\\ &=31a+32b+2(1+2+\ldots+31)=31a+32b+31\cdot 32=31a+32b+992. \end{align*} Por tanto, tenemos el sistema de ecuaciones \[\left\{\begin{array}{l}a+b=1\\31a+32b=1023\end{array}\right.\] que se resuelve fácilmente dando la solución única $a=-991$ y $b=992$. Deducimos así que solo existe una función cumpliendo las condiciones dadas y está definida por \[f(n)=\begin{cases}n-991&\text{si }n\text{ par},\\n+991&\text{si }n\text{ impar}.\end{cases}\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre