Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 765
La sucesión de números reales $\{a_1,a_2,\ldots,a_n,\ldots\}$ se define como \[a_1=56,\qquad a_{n+1}=a_n-\frac{1}{a_n},\text{ para todo }n\geq 1.\] Demostrar que existe un número entero $k$, $1\leq k\leq 2002$, tal que $a_k\lt 0$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 761
Determinar el número máximo de progresiones aritméticas crecientes de tres términos que puede tener una sucesión creciente $a_1\lt a_2\lt\ldots \lt a_n$ de $n\gt 3$ números reales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 756
De una progresión aritmética infinita $\{1,a_1,a_2,\ldots\}$ de números reales se eliminan términos, obteniéndose una progresión geométrica infinita $\{1,b_1,b_2,\ldots\}$ de razón $q$. Encontrar los posibles valores de $q$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 750
Sea $\lambda$ la raíz positiva de la ecuación $t^2-1998t-1=0$. Se define la sucesión $\{x_0,x_1,x_2,\ldots,x_n,\ldots\}$ como \[x_0=1,\qquad x_{n+1}=\lfloor \lambda x_n\rfloor, \text{para todo }n\geq 0.\] Hallar el resto de la división de $x_{1998}$ por $1998$.

Nota: $\lfloor x\rfloor$ indica la parte entera de un número real $x$.

pista
Sin soluciones
info
Pista. Demuestra que el resto de dividir $x_{n+2}$ entre 1998 es una unidad menos que el de $x_n$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 745
Discutir la existencia de soluciones de la ecuación \[\sqrt{x^2-p}+2\sqrt{x^2-1}=x\] según los valores del parámetro $p\in\mathbb{R}$ y resolverla siempre que sea posible.
pistasolución 1info
Pista. Puedes dividir por $x$ para simplificar (observando previamente que ha de ser $x\geq 1$). Elevando varias veces al cuadrado, deberías obtener la solución. también puedes transformar en un sistema asignándole una variable nueva a cada raíz.
Solución. Observamos que tiene que ser $x\gt 0$ ya que el miembro de la izquierda no puede ser negativo, luego $x\geq 1$ para que la segunda raíz esté definida. Dividiendo entre $x$ ambos miembros y escribiendo $t=\frac{1}{x^2}$, la ecuación se reescribe como \[\sqrt{1-pt}+2\sqrt{1-t}=1.\] Si llamamos $y=\sqrt{1-pt}$ y $z=\sqrt{1-t}$, podemos reescribirlo de nuevo como el sistema \[\left\{\begin{array}{l}y+2z=1\\y^2-pz^2=1-p\end{array}.\right.\] Despejamos $y=1-2z$ en la primera ecuación y sustituimos en la segunda, lo que nos da una ecuación de segundo grado en $z$: \[(1-2z)^2-pz^2=1-p\ \Longleftrightarrow\ 4z^2-(p+4)z+p=0.\] Esta ecuación tiene soluciones $z=1$ y $z=\frac{p}{4-p}$. La primera hay que descartarla ya que nos lleva a que $\frac{1}{x^2}=t=0$, que no tiene soluciones. Para $z=\frac{p}{4-p}$, podemos despejar \[\frac{1}{x^2}=t=1-z^2=1-\frac{p^2}{(4-p)^2}=\frac{8(2-p)}{(4-p)^2}.\] Por tanto, tiene que ser $p\leq 2$, lo que nos da la única candidata a solución: \[x=\frac{4-p}{2\sqrt{2}\sqrt{2-p}}.\] Comprobamos ahora si cumple la condición: \[\sqrt{x^2-p}+2\sqrt{x^2-1}=\sqrt{\frac{(4-3p)^2}{8(2-p)}}+2\sqrt{\frac{p^2}{8(2-p)}}=\frac{|4-3p|+2|p|}{2\sqrt{2}\sqrt{2-p}}.\] La única forma de que el numerador anterior sea igual a $4-p$ (para que el resultado de la operación sea $x$), es que $4-3p\geq 0$ y $p\geq 0$, lo que nos dice que la ecuación tiene solución si y sólo si $0\leq p\leq \frac{4}{3}$, en cuyo caso la solución es única.

Nota. Otra forma de ver la existencia y unicidad de solución (aunque no de calcularla) es usar el teorema de Bolzano. La función $f(t)=\sqrt{1-pt}+2\sqrt{1-t}-1$ es continua y estrictamente decreciente. Nos interesa su valor en $[0,\min\{1,\frac{1}{p}\}]$. Tenemos que $f(0)=2\gt 0$. Si $p\geq 1$, entonces evaluamos $f(\frac{1}{p})=2\sqrt{1-\frac{1}{p}}-1$, que es negativo si y sólo si $p\leq\frac{4}{3}$. Si $p\leq 1$, entonces $f(1)=\sqrt{1-p}-1$ es negativo siempre que $p\gt 0$. En resumen, tenemos que $0\leq p\leq \frac{4}{3}$ y que la solución es única.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre