OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Supongamos que $(x,y)$ es una solución a la ecuación original y distingamos casos según el valor de $x$ caiga en algunos de los intervalos anteriores.
Si $|f(0)|\gt\frac{1}{24}$, como $f$ es continua, bastará tomar $c$ suficientemente cercano a $0$. Análogamente, si $|f(1)|\gt\frac{1}{24}$, podremos tomar $c$ sufientemente cercano a $1$ y habremos terminado. Por tanto, supondremos a partir de ahora que $|f(0)|=|1+b|\leq\frac{1}{24}$ y $|f(1)|=|\frac{1}{2}+a+b|\leq\frac{1}{24}$. Desarrollando los valores absolutos, estas desigualdades equivalen a \[\frac{-25}{24}\leq b\leq\frac{-23}{24},\qquad \frac{-13}{24}\leq a+b\leq\frac{-11}{24}.\] Entonces, podemos acotar $a$ de la forma \[a=(a+b)-b\geq\frac{-13}{24}-\frac{-23}{24}=\frac{10}{24}\gt\frac{1}{4},\] luego $c=\frac{1}{\sqrt{a}}-1\in(0,1)$ es un mínimo absoluto de $f$ y el resultado que probamos se reduce a probar que $f(c)=2\sqrt{a}-a+b\lt\frac{-1}{24}$. Ahora bien, observemos que \[f(x)=(1-x)b+(a+b)x+\frac{1}{1+x}\leq (1-x)\frac{-23}{24}-\frac{11}{24}x+\frac{1}{1+x}=\frac{-23}{24}+\frac{1}{2}x+\frac{1}{1+x},\] luego el mínimo absoluto de $f$ es menor o igual que el mínimo absoluto para $a=\frac{1}{2}$ y $b=\frac{-23}{24}$. De esta forma, llegamos a que \[f(c)=2\sqrt{a}-a+b\leq 2\sqrt{\frac{1}{2}}-\frac{1}{2}-\frac{23}{24}=\sqrt{2}-\frac{35}{24}\lt\frac{-1}{24}.\] Para probar la desigualdad $\sqrt{2}-\frac{35}{24}\lt\frac{-1}{24}$, tenemos que es equivalente a $24\sqrt{2}\lt 34$ que, a su vez, elevando al cuadrado, equivale a $1152\lt 1156$, lo que concluye la demostración.
Nota. La desigualdad del enunciado puede parecer muy técnica, pero tiene una interpretación geométrica que puede ayudar a elaborar la solución: la ecuación $ax+b$ representa una recta arbitraria y el valor absoluto nos da la distancia entre esta recta y la función $g(x)=\frac{-1}{1+x}$. Por tanto, el problema nos dice que al aproximar $g(x)$ por cualquier recta en el intervalo $[0,1]$ siempre habrá puntos de la recta que distarán más de $\frac{1}{24}$ del correspondiente punto en la recta.
El resultado no es óptimo ya que tenemos una desigualdad estricta, pero en la solución puede verse que el valor $\frac{1}{24}$ está muy cerca de la cota óptima. Tal cota óptima es mucho más difícil de obtener.
Para ello, observemos que $f(nx)\geq nf(x)$ para todo entero positivo $n$ tal que $nx\in[0,1]$ (sin más que aplicar la tercera propiedad del enunciado reiteradamente). Tomemos entonces $n\geq 2$ tal que $\frac{1}{n+1}\leq x\lt\frac{1}{n}$, con lo que $nf(x)\leq f(nx)\leq 1$. Por tanto, \[f(x)\leq\frac{1}{n}=\frac{n+1}{n(n+1)}\leq\frac{n+1}{n}x=\left(1+\frac{1}{n}\right)x\leq\left(1+\frac{1}{2}\right)x=\frac{3}{2}x\leq 2x.\]
Finalmente, vamos a probar que la respuesta a la última pregunta es negativa (en realidad, no puede sustituirse $2$ en la desigualdad $f(x)\leq 2x$ por otra constante menor). Como contraejemplo sirve la función definida a trozos: \[f:[0,1]\to\mathbb{R},\qquad f(x)=\begin{cases}2x&\text{si }0\leq x\lt\frac{1}{2},\\1&\text{si }\frac{1}{2}\leq x\leq 1.\end{cases}\] Es fácil ver que cumple las condiciones del enunciado (los detalles se dejan al lector), mientras que $f(\frac{1}{2})=2\cdot\frac{1}{2}$, luego $2$ no puede sustituirse por $1,\!9$.