OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Pasando el término $ca_n$ al miembro de la izquierda y elevando al cuadrado llegamos a que
\[(a_{n+1}-ca_n)^2=(c^2-1)(a_n^2-4),\] y desarrollando el cuadrado y el producto, podemos simplificar esta igualdad como \[a_{n+1}^2-2ca_na_{n+1}+a_n^2=4(c^2-1).\] Para eliminar el término $4(c^2-1)$, que no depende de $n$, hacemos el siguiente truco: escribimos la misma igualdad para $n$ y $n+1$, es decir, \begin{eqnarray} a_{n+1}^2-2ca_na_{n+1}+a_n^2&=&4(c^2-1),\\ a_{n+2}^2-2ca_{n+1}a_{n+2}+a_{n+1}^2&=&4(c^2-1). \end{eqnarray} Restando la segunda a la primera, obtenemos \[a_{n+2}^2-a_n^2-2ca_{n+1}a_{n+2}+2ca_na_{n+1}=0,\] que se puede factorizar fácilmente como \[(a_{n+2}+a_n-2ca_{n+1})(a_{n+2}-a_n)=0.\] Ahora bien, si $c=1$, entonces la sucesión es constante igual a 2, luego supondremos $c\gt 1$, con lo que de la definición del enunciado se tiene que $a_{n+1}\gt a_n$ para todo $n$ y, en particular, $a_{n+2}-a_n\neq 0$ con lo que podemos simplificar la ecuación anterior para obtener que \[a_{n+2}=2ca_{n+1}-a_n.\] Como $a_1=2$ y $a_2=2c$ son números naturales, esta fórmula recursiva prueba que $a_n$ es entero para todo número natural $n$.Nota. De hecho la recursión $a_{n+2}=2ca_{n+1}-a_n$ con condiciones iniciales $a_1=2$ y $a_2=2c$ se puede resolver para llegar a la siguiente fórmula explícita: \[a_n=\left(c+\sqrt{c^2-1}\right)^{n-1}+\left(c-\sqrt{c^2-1}\right)^{n-1}.\]