Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 591
¿Qué dígitos se han omitido en la siguiente multiplicación? \[\begin{matrix} &2&*&*\\ \times&&*&*\\\hline &*&6&1\\ *&*&*&\\\hline *&*&0&1 \end{matrix}\]
pistasolución 1info
Pista. Deduce las cifras una a una y separa algún caso cuando haya más de una posibilidad.
Solución. Deduciendo los dígitos de uno en uno, se llega fácilmente a la siguiente solución única: \[\begin{matrix} &2&8&7\\ \times&&2&3\\\hline &8&6&1\\ 5&7&4&\\ \hline 6&6&0&1 \end{matrix}\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 589
Encontrar todas las funciones $f:\mathbb{R}\to\mathbb{R}$ tales que \[f(x + f(y + f(x + f(y + f(x))))) = 3x + 2y\] para cualesquiera números reales $x,y\in\mathbb{R}$.
pistasolución 1info
Pista. Demuestra que existe $x_0\in\mathbb{R}$ tal que $f(x_0)=0$ y sustituye $x=x_0$ en la ecuación funcional.
Solución. El miembro de la derecha toma todos los valores reales posibles, luego está claro que $f$ debe ser sobreyectiva. En particular, existe $x_0\in\mathbb{R}$ tal que $f(x_0)=0$ (por ejemplo, para $x=y=0$, podríamos tomar $x_0=f(f(f(f(0))))$ y cumpliría que $f(x_0)=0$). Sustituyendo $x=x_0$ en la ecuación nos quedaría \[f(x_0+f(y+f(x_0+f(y))))=3x_0+2y.\] Sumando $y$ a ambos miembros y volviendo a aplicar $f$, tenemos que \[f(y+f(x_0+f(y+f(x_0+f(y)))))=f(y+3x_0+2y)=f(3y+3x_0).\] Ahora bien, al miembro de la izquierda en esta igualdad se le puede aplicar la ecuación funcional del enunciado (cambiando $x\mapsto y$ y $y\mapsto x_0$). Esto nos dice que \[3y+2x_0=f(y+f(x_0+f(y+f(x_0+f(y)))))=f(y+3x_0+2y)=f(3y+3x_0).\] Finalmente, haciendo el cambio $t=3y+3x_0$, obtenemos que \[f(t)=t-x_0,\qquad\text{para todo }t\in\mathbb{R}.\] Sin embargo, esta función cumple la ecuación inicial solo cuando $x_0=0$, de donde deducimos que la identidad $f(t)=t$ para todo $t\in\mathbb{R}$ es la única solución al problema.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 587
Determinar todas las funciones $f:\mathbb{R}\to\mathbb{R}$ tales que \[f(xf(y) + y) = f(xy) + f(y)\] para cualesquiera números reales $x,y\in\mathbb{R}$.
pistasolución 1info
Pista. Fíjate en qué ocurre si pudieras elegir $x$ tal que $xf(y)+y=xy$.
Solución. Fijado un valor de $y$, si podemos elegir $x$ para que $xf(y)+y=xy$, entonces se deduce claramente de la ecuación funcional que debe ser $f(y)=0$. Ahora bien, la ecuación $xf(y)+y=xy$ tiene solución si y solo si $f(y)\neq y$. Por lo tanto, tiene que ser $f(y)=y$ o bien $f(y)=0$.

Es fácil darse cuenta también de que la función idénticamente nula y la función identidad son soluciones de la ecuación. Sin embargo, el problema es que para algunos valores de $y$ puede ser $f(y)=y$ y para otros ser $f(y)=0$. Para ver que esto no ocurre, supongamos que $a\neq 0$ es tal que $f(a)=0$. Tomando $y=a$ en la ecuación, tenemos que el miembro de la derecha es igual a $f(xf(a)+a)=f(0+a)=f(a)=0$ y el de la izquierda igual a $f(ax)$. Deducimos que $f(ax)=0$ para todo $x\in\mathbb{R}$, lo que nos lleva a que es idénticamente nula y hemos terminado.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 577
Sea $a>1$ un número real. Encontrar todas las soluciones de la ecuación \[\sqrt{a-\sqrt{a+x}} = x\] en términos de $a$.
pistasolución 1info
Pista. Eleva al cuadrado dos veces para eliminar raíces, pero con cuidado de si los radicandos son positivos o negativos en función de $a$.
Solución. Elevando al cuadrado, tenemos que $a-\sqrt{a+x}=x^2$ y depejamos la raíz como $x^2-a=\sqrt{a+x}$. Elevando de nuevo al cuadrado, tenemos la ecuación \[x^4-2ax^2+a^2=a+x\ \Leftrightarrow\ x^4-2ax^2+x+a(a-1)=0.\] Esta última ecuación de grado $4$ puede parecer imposible de resolver ya que tiene el parámetro $a$, pero resulta que se puede factorizar como producto de dos polinomios de grado $2$: \[0=x^4-2ax^2+x+a(a-1)=(x^2-x-a)(x^2+x-a+1).\] Esto nos da dos ecuaciones de segundo grado. La primera ecuación nos da dos soluciones: \[x^2-x-a=0\ \leadsto\ x_1=\frac{1+\sqrt{1+4a}}{2},\ x_2=\frac{1-\sqrt{1+4a}}{2}.\] La segunda por su parte nos da otras dos soluciones: \[x^2+x-a+1=0\ \leadsto\ x_3=\frac{-1+\sqrt{4a-3}}{2},\ x_4=\frac{-1-\sqrt{4a-3}}{2}.\] Sin embargo, tenemos que comprobar si cada una de estas cuatro soluciones realmente cumple la ecuación original (al elevar al cuadrado podemos haber introducido soluciones ficticias (donde las raíces del enunciado no están definidas o no dar los valores correctos).
  • $x_2$ y $x_4$ son negativos, luego no son soluciones ya que $x=\sqrt{a-\sqrt{x+a}}\geq 0$ nos dice que $x$ tiene que ser positivo (una raíz nunca es negativa).
  • $x_1$ tampoco es solución ya que $x_1=\frac{1+\sqrt{1+4a}}{2}\gt\frac{\sqrt{4a}}{2}=\sqrt{a}$ y cualquier solución cumple que $x=\sqrt{a-\sqrt{x+a}}\lt\sqrt{a}$.
  • $x_3$ sí que es solución (la nota de abajo nos da otro motivo del porqué). Para verlo, nos damos cuenta primero de que $x_3\geq 0$ y, por tanto, $x_3+a\geq 0$; además, tenemos que \begin{align*} 0\leq x_3+a&=\frac{2a-1+\sqrt{4a-3}}{2}\\ &\leq \frac{2a-1+2a-1}{2}=2a-1=a^2-(a-1)^2\leq a^2. \end{align*} Por tanto, se cumple que $\sqrt{x_3+a}\leq a$ y la raíz grande del enunciado también está bien definida. Deducimos que $x_3$ es la única solución.

Nota. Un atajo que nos puede hacer entender mejor el problema es darse cuenta de que el miembro de la izquierda $f(x)=\sqrt{a-\sqrt{a+x}}$ es una función continua y estrictamente decreciente definida en un intervalo $[0,x_0]$ con $f(0)>0$ y $f(x_0)=0$ y que el de la derecha $g(x)=x$ es también continua y estrictamente creciente con $g(0)=0$ y $\lim_{x\to\infty}g(x)=+\infty$, luego la ecuación $f(x)=g(x)$ tiene necesariamente una única solución.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 568
Sea $f$ una función definida en el conjunto $\mathbb{N}_0$ de los números enteros mayores o iguales que cero y que satisface las siguientes condiciones:
  • Si $n=2^j-1$ para algún $j\in\mathbb{N}_0$, entonces $f(n)=0$.
  • Si $n\neq 2^j-1$ para todo $j\in\mathbb{N}_0$, entonces $f(n+1)=f(n)-1$.
Demostrar que, para todo $n\in\mathbb{N}_0$, existe $k\in\mathbb{N}_0$ tal que $f(n)+n=2^k-1$. Calcular $f(2^{1990})$.
pistasolución 1info
Pista. Observa que los valores de la función entre $2^j$ y $2^{j+1}-1$ decrecen de unidad en unidad desde $f(2^j)=2^j-1$ hasta $f(2^{j+1}-1)=0$.
Solución. Para cada $k\in\mathbb N$, el intervalo $[2^k,2^{k+1}-2]$ no contiene números de la forma $2^j-1$, luego el valor de la función $f$ en cada número de ese intervalo es una unidad mayor que en el número siguiente. Como $f(2^{k+1}-1)=0$, se sigue que los valores de $f$ decrecen de unidad en unidad desde $f(2^k)=2^k-1$ hasta $f(2^{k+1}-1)=0$. En otras palabras, tenemos que $f(2^k+m)=2^k-m-1$ para todo entero $0\leq m\leq 2^k-1$, lo que determina unívocamente a la función $f$ ya que todo entero positivo se expresa de forma única como $2^k+m$ con $k,m\in\mathbb{N}_0$ y $0\leq m\leq 2^k-1$.

Esto responde a la primera pregunta ya que, si $n=2^k+m$ con $0\leq m\leq 2^k-1$, entonces \[f(n)+n=2^k-m-1+2^k+m=2^{k+1}-1.\] Además $f(0)+0=f(2^0-1)=0=2^0-1$, luego la propiedad también se cumple para $n=0$. Para responder a la segunda pregunta, expresamos $2^{1990}=2^k+m$ con $k=1990$ y $m=0$, luego \[f(2^{1990})=2^{1990}-0-1=2^{1990}-1.\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre