OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
De todo esto deducimos que existen exactamente $n$ puntos $x_n\lt\cdots\lt x_2\lt x_1$ en los que la función toma el valor $1$. Además, los intervalos en que $f(x)\gt 1$ son los de la forma $(-a_i,x_i)$ para $1\leq i\leq n$, que tienen longitud $x_i+a_i$. Por tanto, la suma de longitudes buscada es \[S=x_1+x_2+\ldots+x_n+a_1+a_2+\ldots+a_n.\]
Volviendo a la expresión de la función, podemos poner denominador común para transformar la ecuación $f(x)=1$ en la ecuación polinómica de grado $n$ siguiente: \begin{eqnarray*} (x+a_1)\cdots(x+a_n)&-&a_1(x+a_2)\cdots(x+a_n)\\ &-&a_2(x+a_1)(x+a_3)\cdots(x+a_n)-\ldots-a_n(x+a_1)\cdots(x+a_{n-1})=0. \end{eqnarray*} Esto cuadra con la afirmación anterior de que existen exactamente $n$ valores de $x$ para los que $f(x)=1$, pero ahora sabemos que son las raíces de este polinomio. Es fácil ver que este polinomio tiene coeficiente de $x^n$ igual a $1$ y coeficiente de $x^{n-1}$ igual a $0$, luego las relaciones de Cardano-Vieta nos dicen que la suma de sus raíces es $x_1+\ldots+x_n=0$. Deducimos finalmente que la suma de las longitudes de los intervalos que nos piden es $S=a_1+a_2+\ldots+a_n$.
Observamos que si multiplicamos los números $x$, $y$ y $z$ por un número no nulo, entonces $x^3+2y^3+4z^3-6xyz$ queda multiplicado por el cubo de ese número y es cero si, y sólo si, originalmente era cero. Por tanto, no hay pérdida de generalidad en multiplicar $x$, $y$ y $z$ por el mismo entero no nulo. Expresando $x$, $y$ y $z$ como fracción irreducible y multiplicando por el mínimo común múltiplo de los denominadores, podremos suponer sin perder generalidad que $x$, $y$ y $z$ son números enteros sin factores comunes.
Ahora bien, si ocurriera que $x^3+2y^3+4z^3-6xyz=0$, entonces $x$ es par y podemos poner $x=2a$ para cierto entero $a$. La igualdad anterior se reescribe como $4a^3+y^3+2z^3-6ayz=0$, luego $y=2b$ para cierto entero $b$, y podemos volver a reescribirla como $2a^3+4b^3+z^3-6abz=0$, de donde $z$ también es par y hemos encontrado un factor común a $x$, $y$ y $z$ en contra de lo que habíamos supuesto.
Nota. Otra forma de proceder es ver directamente que $f$ es inyectiva: si $f(m)=f(n)$, entonces \[f(m)+f(f(m))+f(f(f(m)))=f(n)+f(f(n))+f(f(f(n)))\] y, por tanto, $m=n$.