OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Finalmente, probaremos que las únicas posibilidades son $f(x)=x$ para todo $x\in\mathbb{R}$ ó $f(x)=-x$ para todo $x\in\mathbb{R}$. Por reducción al absurdo, si así no ocurriera, existirían $x_0,y_0\neq 0$ tales que $f(x_0)=x_0$ y $f(y_0)=-y_0$ y, sustituyendo estos valores en la ecuación inicial, tendríamos que $f(x_0^2-y_0)=x_0^2+y_0$ donde tenemos dos posibilidades $f(x_0^2-y_0)=x_0^2-y_0$ ó $f(x_0^2-y_0)=-x_0^2+y_0$ (por ser $f(x)^2=x^2$ para todo $x\in\mathbb{R}$). En el primer caso, se llega a que $y_0=0$ y en el segundo a que $x_0=0$, pero habíamos supuesto que $x_0,y_0\neq 0$.
Por tanto, las únicas soluciones de la ecuación del enunciado son $f(x)=x$ y $f(x)=-x$.
De esta discusión deducimos que las soluciones son $\{1,1,1,1\}$ y $\{-1,-1,-1,3\}$.
Nota. Obviamente podría haberse sustituido $1999$ por cualquier otro número impar.
Supongamos que $\{a_n\}$ es una sucesión cumpliendo el enunciado. El número $1$ se tiene que expresar como suma de términos de $\{a_n\}$, luego no queda otra posibilidad que $a_1=1$ (es estrictamente creciente). Probemos ahora por inducción que $a_n=2^{n-1}$ para lo que supondremos que $a_k=2^{k-1}$ para $0\leq k\lt n$. Todo número menor que $2^{n-1}$ se puede expresar como suma de términos distintos de $\{a_1,\ldots,a_{n-1}\}$ y $a_1+a_2+\ldots+a_{n-1}=2^{n-1}-1$ es el mayor número así construído luego necesariamente $a_n=2^{n-1}$. En caso contrario, $2^{n-1}$ no podría expresarse como suma de términos distintos de la sucesión y hemos demostrado que esta es la única solución.