Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1003
Dos circunferencias $C$ y $C'$ son secantes en dos puntos $P$ y $Q$. La recta que une los centros corta a $C$ en $R$ y a $C'$ en $R'$, la que une $P$ y $R'$ corta a $C$ en $X\neq P$ y la que une $P$ y $R$ corta a $C'$ en $X'\neq P$. Supongamos además que los tres puntos $X$, $Q$ y $X'$ están alineados.
  1. Hallar el ángulo $\angle XPX$.
  2. Demostrar que $(d+r−r')(d-r+r')=rr'$, donde $d$ es la distancia entre los centros de las circunferencias y $r$ y $r'$ sus radios.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre