Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1008
Se tienen dos progresiones de números reales, una aritmética $\{a_n\}_{n\geq 1}$ y otra geométrica $\{g_n\}_{n\geq 1}$ no constante. Se verifica que $a_1=g_1\neq 0$, $a_2=g_2$ y $a_{10}=g_3$. Estudiar si, para cada entero positivo $p$, existe un entero positivo $m$ tal que $g_p=a_m$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre