Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1010
Sea $A_1$ el punto diametralmente opuesto al vértice $A$ del triángulo $ABC$ en la circunferencia circunscrita y sea $A'$ el punto en el que la recta $AA_1$ corta al lado $BC$. La perpendicular a $AA'$ trazada por $A'$ corta a los lados $AB$ y $AC$ (o a sus prolongaciones) en $M$ y $N$, respectivamente. Demostrar que los puntos $A$, $M$, $A_1$ y $N$ están en una circunferencia cuyo centro se encuentra en la altura desde $A$ en el triángulo $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre