Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1034
Sea $p$ un número primo impar y sea \[S_q=\frac{1}{2\cdot 3\cdot 4}+\frac{1}{5\cdot 6\cdot 7}+\ldots+\frac{1}{q(q+1)(q+2)},\] donde $q=\frac{3p-5}{2}$. Escribimos $\frac{1}{p}-2S_q$ en la forma $\frac{m}{n}$ siendo $m$ y $n$ enteros. Demostrar que $m\equiv n\ (\text{mod }p)$, es decir, $m$ y $n$ dan el mismo resto al ser divididos por $p$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre