Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1041
Dado un entero positivo $n$, se escriben todos sus divisores enteros positivos en una pizarra. Ana y Beto juegan el siguiente juego:

Por turnos, cada uno va a pintar uno de esos divisores de rojo o azul. Pueden elegir el color que deseen en cada turno, pero solo pueden pintar números que no hayan sido pintados con anterioridad. El juego termina cuando todos los números han sido pintados. Si el producto de los números pintados de rojo es un cuadrado perfecto, o si no hay ningún número pintado de rojo, gana Ana; de lo contrario, gana Beto. Si Ana tiene el primer turno, determinar para cada $n$ quién tiene estrategia ganadora.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre