Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1047
Determinar los números reales $x\gt 1$ para los cuales existe un triángulo cuyos lados tienen longitudes \[x^4+x^3+2x^2+x+1,\qquad 2x^3+x^2+2x+1,\qquad x^4-1.\]
pistasolución 1info
Pista. Determina cuál es el lado mayor y fíjate en que no debe alcanzar a la suma de los otros dos para que exista el triángulo (desigualdad triangular).
Solución. En primer lugar, vamos a determinar cuál es el lado mayor. Por un lado, \[x^4+x^3+2x^2+x+1\gt x^4+1\gt x^4-1,\] ya que $x$ es positivo. Usando que $x\gt 1$, tenemos que $x^4\geq x^3$ y $x^2\gt x$, luego \[x^4+x^3+2x^2+x+1\gt x^3+x^3+x^2+x+x+1=2x^3+x^2+2x+1.\] Sabiendo entonces que el primer lado es el mayor, tendremos que ver cuándo no supera a la suma de los otros dos, es decir, la respuesta al enunciado serán los números $x\gt 1$ tales que \[x^4+x^3+2x^2+x+1\lt (2x^3+x^2+2x+1)+(x^4-1).\] Tras simplificar y factorizar, nos queda $-x^3+x^2-x+1\lt 0$ y podemos factorizar el miembro de la izquierda para llegar a la desgualdad $(x^2+1)(1-x)\lt 0$, desigualdad que no se cumple para todo $x\gt 1$. Por tanto, para todo $x\gt 1$ hay un triángulo cuyos lados tienen las longitudes del enunciado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre