Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1074
Demuestra que para todo $n\geq 2$ podemos encontrar $n$ números reales $x_1,x_2,\ldots,x_n$, todos ellos distintos de $1$, de manera que \[x_1x_2\cdots x_n=\frac{1}{1-x_1}\cdot\frac{1}{1-x_2}\cdots\frac{1}{1-x_n}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre