En el conjunto de números enteros positivos menores o iguales que $1000000$, indica si es mayor la cantidad de números que pueden expresarse de la forma $a^3 +mb^2$, con $a,b\in\mathbb{N}$ y $m\in\{0,2,4,6,8\}$ o la cantidad de números que no pueden expresarse de esa manera.
Solución. Observemos que podemos restringirnos a $500000=5\cdot 100\cdot 1000$ elecciones de la terna $(a,b,m)$ suponiendo que $a$ está entre $1$ y $100$, $b$ está entre $1$ y $1000$ y $m$ tiene 5 valores posibles. Por tanto, habrá como máximo $500000$ números que pueden expresarse de esta manera. No obstante, algunos de estos números se pasan de $1000000$ (por ejemplo, para $(a,b,m)=(100,1000,8)$), luego realmente habrá menos de la mitad de números menores o iguales que 1000000 que se expresan de esta manera.
Nota. Otra forma de razonar el final es darse cuenta de que hay números que se expresan de dos formas distintas. Por ejemplo, las ternas $(a,b,m)=(4,2,2)$ y $(a,b,m)=(2,4,4)$ producen el mismo número $a^3+mb^2=72$.
Otra forma de razonar el final es darse cuenta de que para $m=0$ no se producen $100000$ valores distintos sino solo $100$ ya que el valor de $b$ no es relevante.