Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1080
Prueba que, para todo $a,b,c\gt 0$, se cumple que \[\frac{a^2}{b^3c}-\frac{a}{b^2}\geq \frac{c}{b}-\frac{c^2}{a}.\] ¿En qué caso se cumple la igualdad?
pistasolución 1info
Pista. Factoriza la expresión $\frac{a^2}{b^3c}-\frac{a}{b^2}-\frac{c}{b}+\frac{c^2}{a}$ poniendo previamente denominador común.
Solución. Observemos que \begin{align*} \frac{a^2}{b^3c}-\frac{a}{b^2}-\frac{c}{b}+\frac{c^2}{a}&=\frac{a^3-a^2 b c-a b^2 c^2+b^3 c^3}{a b^3 c}\\ &=\frac{c^2}{a}\cdot\left(\frac{a^3}{b^3c^3}-\frac{a^2}{b^2c^2}-\frac{a}{bc}+1\right). \end{align*} Obtenemos así el polinomio $x^3-x^2-x+1$ tras el cambio $x=\frac{a}{bc}$. Este polinomio se puede factorizar como $(x-1)^2(x+1)$, luego podemos proseguir factorizando como \begin{align*} \frac{a^2}{b^3c}-\frac{a}{b^2}-\frac{c}{b}+\frac{c^2}{a} &=\frac{c^2}{a}\cdot\left(\frac{a}{bc}-1\right)^2\left(\frac{a}{bc}+1\right)\geq 0. \end{align*} La igualdad se da cuando el factor $\frac{a}{bc}-1$ se anula (ya que el resto de factores son estrictamente positivos), es decir, cuando $a=bc$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre