Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1090
Determinar todos los valores reales de $(x,y,z)$ para los cuales \[\left\{\begin{array}{l} x+y+z=1\\ x^2y+y^2z+z^2x=xy^2+yz^2+zx^2,\\ x^3+y^2+z=y^3+z^2+x. \end{array}\right.\]
pistasolución 1info
Pista. Factoriza la segunda ecuación.
Solución. La idea clave es darse cuenta de que la segunda ecuación se puede escribir equivalentemente como $(x-y)(y-z)(x-z)=0$, lo que nos dice que dos de las incógnitas tienen que ser iguales. Como no hay simetría, tendremos que distinguir tres casos:
  • Si $x=y$, entonces la primera ecuación nos dice que $2x+z=1$. Sustituyendo $y=x$ y $z=1-2x$ en la tercera y simplificando, llegamos a la ecuación $3x^2-x=0$, que nos da soluciones $x=0$ y $x=\frac{1}{3}$. Deshaciendo las sustituciones, obtenemos la soluciones al sistema original $(x,y,z)=(0,0,1)$ y $(x,y,z)=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$.
  • Si $y=z$, la primera ecuación nos da $x+2y=1$, luego podemos sustituir $z=y$ y $x=1-2y$ en la tercera ecuación y después de simplificar nos queda $y(3y^2-4y+1)=0$, que tiene soluciones $y=0$, $y=1$ e $y=\frac{1}{3}$. En el sistema original, esto se corresponde con las soluciones $(1,0,0)$, $(-1,1,1)$ y $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$, aunque esta última ya la hemos obtenido previamente.
  • Si $z=x$, procedemos de forma análoga usando la primera ecuación para obtener $y=1-2x$. Sustituyendo en la tercera y simplificando, llegamos a que $x(9x^2-9x+2)=0$, ecuación que tiene por soluciones $x=0$, $x=\frac{1}{3}$ y $x=\frac{2}{3}$. Estas nos dan las soluciones del sistema $(0,1,0)$, $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ y $(\frac{2}{3},\frac{-1}{3},\frac{2}{3})$.
Se han obtenido así un total de $7$ soluciones distintas.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre