Demostrar que si entre los infinitos términos de una progresión aritmética de números enteros positivos hay un cuadrado perfecto, entonces infinitos términos de la progresión son cuadrados perfectos.
pistasolución 1info
Pista. Si $a^2$ es un término de la sucesión y $d$ es la diferencia, encuentra $k\in\mathbb{N}$ tal que $a^2+kd$ sea un cuadrado perfecto.
Solución. Llamemos $d$ a la diferencia de la progresión aritmética y supongamos que $a^2$ es un término de la sucesión. Entonces, $(a+d)^2=a^2+(2a+d)d$ también es un término de la sucesión (pues es el término $a^2$ al que se le ha sumado un múltiplo entero de $d$) lo que nos dice que, dado un cuadrado perfecto en la sucesión podemos encontrar otro mayor que éste luego ha de haber infinitos cuadrados perfectos.