Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1117
Sea $ABCD$ un cuadrilátero convexo y sea $P$ un punto en el interior. Si se cumple que \[\text{Área}(PAB)\cdot\text{Área}(PCD)=\text{Área}(PBC)\cdot\text{Área}(PDA),\] demostrar que $P$ se encuentra en el segmento $AC$ o en el segmento $BD$.
pistasolución 1info
Pista. Usa la fórmula de que el área de un triángulo es la mitad del producto de dos lados por el seno del ángulo que forman para transformar la condición en un problema trigonométrico sobre los ángulos que forman los segmentos $PA,PB,PC,PD$ en $P$.
Solución. Consideremos los ángulos $\alpha=\angle APB$, $\beta=\angle BPC$, $\gamma=\angle CPD$ y $\delta=\angle DPA$, que suman $360^\circ$. Entonces, podemos escribir \begin{align*} \text{Área}(PAB&)=\tfrac{1}{2}PA\cdot PB\cdot\mathrm{sen}(\alpha),& \text{Área}(PCD&)=\tfrac{1}{2}PC\cdot PD\cdot\mathrm{sen}(\gamma),\\ \text{Área}(PBC&)=\tfrac{1}{2}PB\cdot PC\cdot\mathrm{sen}(\beta),& \text{Área}(PDA&)=\tfrac{1}{2}PD\cdot PA\cdot\mathrm{sen}(\delta). \end{align*} Por tanto, la condición del enunciado se escribe como \[\mathrm{sen}(\alpha)\mathrm{sen}(\gamma)=\mathrm{sen}(\beta)\mathrm{sen}(\delta).\qquad (\star)\] Ahora bien, como $\alpha+\beta+\gamma+\delta=360^\circ$, la igualdad $(\star)$ nos dice que \begin{align*} \cos(\alpha+\gamma)=\cos(\beta+\delta)&\ \Leftrightarrow\ \cos(\alpha)\cos(\gamma)-\mathrm{sen}(\alpha)\mathrm{sen}(\gamma)=\cos(\beta)\cos(\delta)-\mathrm{sen}(\beta)\mathrm{sen}(\delta)\\ &\ \Leftrightarrow\ \cos(\alpha)\cos(\gamma)=\cos(\beta)\cos(\delta). \end{align*} Elevando esta última al cuadrado y cambiando $\cos^2=1-\mathrm{sen}^2$, llegamos a que \[(1-\mathrm{sen}^2(\alpha))(1-\mathrm{sen}^2(\gamma))=(1-\mathrm{sen}^2(\beta))(1-\mathrm{sen}^2(\delta)).\] Desarrollamos y usamos $(\star)$ de nuevo para obtener que \[\mathrm{sen}^2(\alpha)+\mathrm{sen}^2(\gamma)=\mathrm{sen}^2(\beta)+\mathrm{sen}^2(\delta)\] Sumando dos veces $(\star)$ a esta última ecuación, nos queda \[\left(\mathrm{sen}(\alpha)+\mathrm{sen}(\gamma)\right)^2=\left(\mathrm{sen}(\beta)+\mathrm{sen}(\delta)\right)^2.\] Como todos los senos son positivos (aquí usamos que el cuadrilátero es convexo, luego $\alpha,\beta,\gamma,\delta\lt 180^\circ$), deducimos finalmente que $\mathrm{sen}(\alpha)+\mathrm{sen}(\gamma)=\mathrm{sen}(\beta)+\mathrm{sen}(\delta)$. En otras palabras, las dos parejas $(\mathrm{sen}(\alpha),\mathrm{sen}(\gamma))$ y $(\mathrm{sen}(\beta),\mathrm{sen}(\delta))$ tienen la misma suma y el mismo producto, luego son iguales salvo reordenación.
  • Si $\mathrm{sen}(\alpha)=\mathrm{sen}(\beta)$ y $\mathrm{sen}(\gamma)=\mathrm{sen}(\delta)$, hay dos posibilidades. La primera es que $\alpha+\beta=180^\circ$ o $\beta+\delta=180^\circ$ (en cuyo caso, $P$ está en la diagonal $AC$ o $BD$, respectivamente). La segunda es que $\alpha=\beta$ y $\gamma=\delta$; como $\alpha+\beta+\gamma+\delta=360^\circ$, se tiene que $\alpha+\delta=180^\circ$ y $P$ está sobre $BD$.
  • Si $\mathrm{sen}(\alpha)=\mathrm{sen}(\delta)$ y $\mathrm{sen}(\gamma)=\mathrm{sen}(\beta)$, se razona de forma totalmente análoga.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre