Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1126
Consideramos 2024 números primos distintos $p_1,p_2,\ldots,p_{2024}$ tales que \[p_1+p_2+\ldots+p_{1012}=p_{1013}+p_{1014}+\ldots+p_{2024}.\] Sea $A=p_1p_2\cdots p_{1012}$ y $B=p_{1013}p_{1014}\cdots p_{2024}$. Demostrar que $|A-B|\geq 4$.
pistasolución 1info
Pista. Demuestra que $A-B$ es múltiplo de $4$ y que no puede ser igual a $0$.
Solución. Ninguno de los primos puede ser igual a $2$ ya que en tal caso una de las sumas sería par y la otra impar, luego podemos suponer que todos los primos son impares, es decir, son congruentes con $1$ o con $3$ módulo $4$. Pongamos que en los $1012$ primeros primos hay $m_1$ de ellos congruentes con $1$ y $m_3$ congruentes con $3$ módulo $4$, mientras que en los últimos $1012$ primos hay $n_1$ congruentes con $1$ y $n_3$ congruentes con $3$ módulo $4$. La igualdad del enunciado módulo $4$ se lee \[m_1+3m_3\equiv n_1+3n_3\ (\text{mod }4).\qquad (\star)\] Como $m_1+m_3=n_1+n_3=1012\equiv 0\ (\text{mod }4)$, tendremos que $n_1\equiv -n_3\ (\text{mod }4)$ y $m_1\equiv-m_3\ (\text{mod }4)$, lo que nos permite reescribir la congruencia $(\star)$ como $2m_3\equiv 2n_3\ (\text{mod }4)$. Esto nos dice que $m_3$ y $n_3$ tienen la misma paridad (¿por qué?). Por lo tanto, \[A\equiv 3^{m_3}\equiv 3^{n_3}\equiv B\ (\text{mod }4)\] ya que la potencia $3^a$ módulo $4$ es igual a $1$ si $a$ es par o a $3$ si $a$ es impar. Hemos probado así que $A-B$ es múltiplo de $4$ pero no puede ser igual a $0$ ya que $A\neq B$ (son todos primos distintos). Tenemos así que $|A-B|\geq 4$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre