Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1138
Sophie está apoyada sobre una mesa circular y recibe un WhatsApp en el que se indica un número positivo $\ell_1$ junto con el mensaje ``Desplázate alrededor de la mesa, a izquierda o derecha y tantas veces como quieras, una distancia $\ell_1$ y verás cómo aparece un reloj''. Muerta de curiosidad, decide desplazarse a lo largo del borde de la mesa la distancia $\ell_1$ (que supone más de la mitad del perímetro de la mesa), y después la misma distancia $\ell_1$, y así sucesivamente, hasta darse cuenta de que siempre llega a los mismos $12$ puntos del borde de la mesa. A continuación, Sophie recibe otro WhatsApp con otro número $\ell_2$, mayor que el anterior y menor que el perímetro de la mesa, al que sigue un mensaje similar al primero. Vuelve a probar y se desplaza esta vez una distancia $\ell_2$ a lo largo del borde de la mesa y procede como antes hasta comprobar que también esta vez el mensaje es cierto y que siempre llega a los mismos 12 puntos del borde de la mesa.

A partir de los valores $\ell_1$ y $\ell_2$, ¿puede calcular Sophie el área de la superficie de la mesa? En caso afirmativo, indica cómo hacerlo.

pistasolución 1info
Pista. Demuestra en primer lugar que los 12 puntos están equiespaciados a lo largo del borde de la mesa. Usa después aritmética modular para modelar el problema.
Solución. Sabemos que sólo se pueden alcanzar $12$ puntos, pongamos que se llaman $p_1,\ldots,p_{12}$ y que están ordenados en sentido de las agujas del reloj. En primer lugar, hay que observar que, a partir de cualquier punto $p_i$, avanzando un cierto número de veces una distancia $\ell_1$ se llega a cualquier otro $p_j$. Esto se deduce de que repetir dos veces la elección que ha generado los 12 puntos tiene que pasar otra vez por todos ellos. En segundo lugar, vamos a probar que los puntos están equiespaciados por reducción al absurdo, tomando dos puntos consecutivos $p_k$ y $p_{k+1}$ que definen el menor de los $12$ arcos en que $p_1,\ldots,p_{12}$ dividen a la circunferencia. Si $p_j$ y $p_{j+1}$ definieran un arco mayor, lo único que hay que hacer es, una vez estemos en $p_j$, repetir el mismo número de avances de longitud $\ell_1$ que llevan de $p_k$ a $p_{k+1}$: esto nos llevará de $p_j$ a un punto $p'_j$ que está estrictamente entre $p_j$ y $p_{j+1}$, lo que nos da la contradicción buscada.

Podemos entonces identificar el vértice $p_k$ con el número $k$ y $\ell_1$ y $\ell_2$ con enteros $6\lt\ell_1\lt \ell_2\lt 12$ tales que avanzar $\ell_i$ desde $p_k$ se corresponde con sumar $k+\ell_i$ módulo $12$. Los únicos números $\ell_1$ y $\ell_2$ que permiten pasar por los $12$ puntos son los primos relativos con $12$, lo que nos dice necesariamente que $\ell_1=7$ y $\ell_2=11$. Tenemos así que el radio de la mesa $r$ verifica $\ell_1=\frac{7}{12}\cdot 2\pi r$, lo que nos da $r=\frac{6\ell_1}{7\pi}$ y nos permite calcular su área a partir del dato $\ell_1$ que conoce Sophie: \[A=\pi r^2=\frac{36\pi\,\ell_1^2}{49}.\]

Nota. En realidad, no es necesario que se envíe el segundo Whatsapp puesto que, una vez se dibujan los 12 puntos, Sophie puede demostrar que son equidistantes con el argumento dado, y después sabe que avanzar la distancia $\ell_1$ supone 7 posiciones (porque ella puede contarlas, aunque nosotros no tengamos ese dato, es decir, ella sabe distinguir si avanza 7 u 11 posiciones).

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre