OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
En el resto de casos $a=1$, $a=4$ y $a=9$, el propio $a$ es un cuadrado perfecto, luego tendremos que ver que el número $b$ formado sólo por unos no lo es. Por reducción al absurdo, si $b=m^2$ fuera un cuadrado perfecto, entonces la cifra de las unidades de $m$ será $1$ o $9$, luego $m=10k+1$ o bien $m=10k+9$ para cierto $k\geq 1$. Elevando al cuadrado tenemos que \[b=(10k+1)^2=100k^2+20k+1=20(5k^2+k)+1,\] luego $b$ es un múltiplo de $20$ más $1$, es decir, la cifra de las decenas de $b$ es par, lo que contradice que $b$ está formado sólo por unos. De la misma forma, \[(10k+9)^2=100k^2+180k+81=20(5k^2+9k+4)+1\] no puede estar formado sólo por unos.
Los únicos números naturales menores que $100$ cuyos cuadrados tienen repetida las cifras de las unidades y las decenas (y son no nulas) son $12$, $38$, $62$ y $88$, que cumplen que $12^2=144$, $38^2=1444$, $62^2=3844$ y $88^2=7744$. Hemos reducido el problema a buscar los números naturales $m$ tales que $m^2=44\ldots4=4\cdots 11\ldots1$. Esto exige que $\frac{m}{2}$ sea impar (ya que el cuadrado de un número par es par). Podemos escribir $\frac{m}{2}=2l+1$ para cierto número $l$, de donde $(2l+1)^2=11\ldots1$ o bien $4l(l+1)=11\ldots10$. Esto no es posible porque los múltiplos de $4$ tienen sus dos últimos dígitos $00$ o múltiplo de $4$, pero $10$ no es múltiplo de $4$.
Nota. Esta es una solución aportada por Samuel Gómez Moreno.