Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1147
Se consideran los puntos del plano $P_1=(1,1000)$ , $P_2=(2,1000)$,... $P_{1998} = (1998,1000)$ y el origen de coordenadas $O = (0,0)$. Para cada uno de los puntos $P_k$ se traza el segmento $OP_k$ únicamente si no contiene más puntos con ambas coordenadas enteras que $O$ y $P_k$. ¿Cuántos segmentos se dibujan?
pistasolución 1info
Pista. Demuestra que el segmento $OP_k$ contiene un punto de coordenadas enteras si, y solamente si, $k$ y $1000$ tienen un factor común mayor que $1$.
Solución. Consideremos un punto $P=(a,b)$ en general con sus dos coordenadas enteras no negativas, es decir, $a,b\in\mathbb{N}$. Vamos a demostrar previamente que el segmento $OP$ contiene otro punto de coordenadas enteras si, y sólo si, $a$ y $b$ no son primos relativos.

Por un lado, si existe tal punto en $OP$, esto quiere decir que existen $c,d\in\mathbb{N}$ y $0\lt\lambda\lt 1$ tales que $(c,d)=\lambda(a,b)$. En particular, $\lambda=\frac{c}{a}=\frac{d}{b}$ es un número racional. Supongamos que $\lambda=\frac{m}{n}$ como fracción irreducible, luego \[c=\frac{m}{n}a,\qquad d=\frac{m}{n}b,\] de forma que $n$ debe ser un divisor común a $a$ y $b$. Observemos que $n\gt 1$ ya que $0\lt \lambda\lt 1$, luego hemos probado que $a$ y $b$ no son primos entre sí. Recíprocamente, si $n\gt 1$ es un divisor común a $a$ y $b$, entonces el punto $(c,d)=(\frac{a}{n},\frac{b}{n})$ es un punto de coordenadas enteras en el segmento $OP$, lo que concluye la demostración.

Con esta información, el problema se traduce en ver cuántos números enteros $k$ entre $1$ y $1998$ son primos relativos con $1000$. Como $1000=2^3\cdot 5^3$, estamos buscando los valores de $k$ que no tienen factores primos $2$ ni $5$. De los $1998$ números considerados, hay $999$ múltiplos de $2$, $399$ múltiplos de $5$ y $199$ múltiplos de $10$ (¿sabrías contarlos rápidamente?). Por tanto, la cantidad de primos relativos con $1000$ (la solución al problema) es: \[1998-999-399+199=799\] (hay que añadir $199$ ya que estamos quitando los múltiplos de $10$ dos veces).

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre