OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota: $f^2(x)=f(f(x))$, $f^3(x)=f(f^2(x))=f(f(f(x)))$ y, en general, \[f^n(x)=f(f^{n-1}(x))=f(f(\ldots f(x))\ldots))\quad (n\text{ veces}).\]
Esto nos dice que, para cada $n\in\mathbb{N}$ podemos expresar $f^{n-1}(x)=x p_{n-1}(x)+1$ para cierto polinomio $g_{n-1}(x)$. Tenemos así que \begin{align*} \mathrm{mcd}(f(x),f^n(x))&=\mathrm{mcd}(f(x),f^{n-1}(f(x)))\\ &=\mathrm{mcd}(f(x),f(x) p_{n-1}(f(x))+1)=1. \end{align*}
Nota. El resultado es también cierto cambiando $f(x)=x^{1997}-x+1$ por cualquier polinomio $f(x)$ con coeficientes enteros y $f(0)=f(1)=1$. También es cierto que $f^n(y)$ y $f^m(y)$ son primos relativos para cualesquier $m,n\in\mathbb{N}$ (basta aplicar el enunciado a $x=f^{m-1}(y)$ con $n+1$ en lugar de $n$).