OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
En el caso del dodecágono, para demostrar que no se puede, vamos a razonar por reducción al absurdo suponiendo que existen 6 segmentos de distinta longitud que emparejan los 12 vértices. Si numeramos los vértices consecutivamente con números del 1 al 12, habrá siempre 3 de los segmentos que unan un vértice par con uno impar mientras que los otros tres unirán par con par o bien impar con impar. Como entre 1 y 12 hay el mismo número de pares que de impares, hemos llegado a la contradicción buscada.
Nota. El mismo razonamiento prueba que es imposible el emparejamiento para polígonos de $8n+4$ vértices. ¿Es posible emparejar los vértices de un polígono de $8n$ lados? ¿Y los de un polígono de $4n+2$ lados?