Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1203
Se elige un punto arbitrario $M$ en el interior de un segmento $AB$. Se toman cuadrados $AMCD$ y $MBEF$ al mismo lado de $AB$, siendo los segmentos $AM$ y $MB$ sus bases. Las circunferencias circunscritas a estos cuadrados, con centros en $P$ y $Q$, se cortan en $M$ y también en otro punto $N$. Sea $N'$ el punto de intersección de las rectas $AF$ y $BC$.
  1. Demostrar que los puntos $N$ y $N'$ coinciden.
  2. Demostrar que la recta $MN$ pasa por un punto $S$ al variar $M$.
  3. Encontrar el lugar geométrico del punto medio del segmento $PQ$ al variar $M$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre