Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1210
Consideremos un cono de revolución con una esfera inscrita tangente a la base del cono. Se circunscribe un cilindro a esta esfera de forma que una de sus bases está contenida en la base del cono. Sea $V_1$ el volumen del cono y $V_2$ el volumen del cilindro.
  1. Demostrar que $V_1\neq V_2$.
  2. Hallar el menor número $k$ para el que $V_1=kV_2$. Para este valor de $k$, hallar el ángulo con vértice en el vértice del cono y que subtiende un diámetro de la base del cono.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre