Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 122
Diremos que un conjunto de números naturales es especial cuando tomando cualesquiera dos elementos $a$ y $b$ del conjunto, se cumple que $(a-b)^2$ divide a $ab$.
  1. Encontrar un conjunto especial de tres elementos.
  2. ¿Existe un conjunto de especial de cuatro números en progresión aritmética?
pistasolución 1info
Pista. El apartado (a) es muy fácil y, para el apartado (b), busca relaciones de divisibilidad.
Solución. Un conjunto especial de tres elementos es $\{2,3,4\}$. Veamos ahora que no existen cuatro números en progresión aritmética que formen un conjunto especial. Para ello, supongamos que $a$, $a+b$, $a+2b$ y $a+3b$ forman un conjunto especial y lleguemos a una contradicción. Observemos en primer lugar que si tomamos $d=\mathrm{mcd}(a,b)$ y $d\neq 1$, entonces considerando $a'=\frac{a}{d}$ y $b'=\frac{b}{d}$, los números $a'$, $a'+b'$, $a'+2b'$ y $a'+3b'$ también están en progresión aritmética, forman un conjunto especial y $\mathrm{mcd}(a',b')=1$. Por tanto, podemos suponer que el máximo común divisor de $a$ y $b$ es uno. En esta situación, $a(a+b)$ es divisible por $b^2$ por ser el conjunto especial luego $a^2+ab=a(a+b)=kb^2$ para cierto entero $k$, de donde $a^2=(k-a)b$ es divisible por $b$ lo cual, salvo que $b=1$, es imposible ya que habíamos supuesto que $\mathrm{mcd}(a,b)=1$. Por tanto, el conjunto ha de ser de la forma $\{a, a+1, a+2, a+3\}$ pero entonces como es especial se tiene que $a(a+2)$ y $(a+1)(a+3)$ son divisibles por $4$ pero uno de estos dos números es impar y hemos llegado a la contradicción buscada.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre