Un pentágono convexo $ABCDE$ tiene la propiedad de que el área de cada uno de los cinco triángulos $ABC$, $BCD$, $CDE$, $DEA$ y $EAB$ es uno. Demostrar qeu todos los pentágonos con esta propiedad tienen la misma área y calcularla. Demostrar, además, que hay una cantidad infinita de pentágonos no congruentes con dicha propiedad.