Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1247
  1. Se tienen dos puntos $B$ y $C$ en un segmento $AD$ de forma que $AB=CD$. Demostrar que para cualquier punto $P$ del plano se cumple que $PA+PD\geq PB+PC$.
  2. Dados cuatro puntos $A,B,C,D$ en el plano tales que para cualquier punto $P$ del plano se cumple que $PA+PD\geq PB+PC$. Demostrar que $B$ y $C$ están en el segmento $AD$ y verifican $AB=CD$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre