Se tienen dos puntos $B$ y $C$ en un segmento $AD$ de forma que $AB=CD$. Demostrar que para cualquier punto $P$ del plano se cumple que $PA+PD\geq PB+PC$.
Dados cuatro puntos $A,B,C,D$ en el plano tales que para cualquier punto $P$ del plano se cumple que $PA+PD\geq PB+PC$. Demostrar que $B$ y $C$ están en el segmento $AD$ y verifican $AB=CD$.