Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 1253
Sean $x_1,x_2,\ldots,x_n$ números reales positivos y sea $S=x_1+x_2+\ldots+x_n$ su suma. Demostrar que \[(1+x_1)(1+x_2)\cdots(1+x_n)\leq 1+S+\frac{S^2}{2!}+\frac{S^3}{3!}+\ldots+\frac{S^n}{n!}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre