Sea $D$ un punto interior de un triángulo acutángulo $ABC$, con $AB\gt AC$, de forma que $\angle DAB = \angle CAD$. Un punto $E$ en el segmento $AC$ satisface $\angle ADE = \angle BCD$, un punto $F$ en el segmento $AB$ satisface $\angle FDA = \angle DBC$, y un punto $X$ en la recta $AC$ satisface $CX=BX$. Sean $O_1$ y $O_2$ los circuncentros de los triángulos $ADC$ y $EXD$ respectivamente. Probar que las rectas $BC$, $EF$ y $O_1O_2$ son concurrentes.