Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1287
Sea $ABC$ un triángulo acutángulo con $AB\lt AC$. Sea $\Omega$ el circuncírculo de $ABC$. Sea $S$ el punto medio del arco $CB$ de $\Omega$ que contiene a $A$. La perpendicular por $A$ a $BC$ corta al segmento $BS$ en $D$ y a $\Omega$ de nuevo en $E\neq A$. La paralela a $BC$ por $D$ corta a la recta $BE$ en $L$. Sea $\omega$ el circuncírculo del triángulo $BDL$. Las circunferencias $\omega$ y $\Omega$ se cortan de nuevo en $P\neq B$. Demostrar que la recta tangente a $\omega$ en $P$ corta a la recta $BS$ en un punto de la bisectriz interior del ángulo $\angle BAC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre